• 제목/요약/키워드: Tube Size

Search Result 811, Processing Time 0.029 seconds

Separate and integral effect tests of aerosol retention in steam generator during tube rupture accident

  • Lee, Byeonghee;Kim, Sung-Il;Ha, Kwang Soon
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2702-2713
    • /
    • 2022
  • A steam generator tube rupture accompanying a core damage may cause the fission product to be released to environment bypassing the containment. In such an accident, the steam generator is the major path of the radioactive aerosol release. AEOLUS facility, the scaled-down model of Korean type steam generator, was built to examine the aerosol removal in the steam generator during the steam generator tube rupture accident. Integral and separate effect tests were performed with the facility for the dry and flooded conditions, and the decontamination factors were presented for different tube configurations and submergences. The dry test results were compared with the existing test results and with the analyses to investigate the aerosol retention physics by the tube bundle, with respect to the particle size and the bundle geometry. In the flooded tests, the effect of submergence were shown and the retention in the jet injection region were presented with respect to the Stokes number. The test results are planned to be used to constitute the aerosol retention model, specifically applicable for the analysis of the steam generator tube rupture accident in Korean nuclear power plants to evaluate realistic fission product behavior.

Optical Properties with Arc Tube Structure of Ceramic Metal-Halide Lamps (세라믹 메탈할라이드 램프의 아크튜브 구조에 따른 광학적 특성)

  • Kim, Woo-Young;Jang, Hyeok-Jin;Yang, Jong-Kyung;Park, Hyung-Jun;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.378-379
    • /
    • 2009
  • High intensity metal halide discharge lamp performance, specifically the generated luminous flux and light color content, depends critically on the arc tube design. Factors influencing the design and consequent lamp efficacy include : lamp size, geometry, arc tube composition, fill chemistry, electrode design and excitation modes. Shaping of Polycrystalline Alumina(PCA) can be realized by conventional ceramic processes. Several processes are applied nowadays. Well-known in the ceramic high pressure field for decades are the pressing and the extrusion method. Newly developed slurry and precious forming technologies give the one-body seamless tubes, which improve thickness uniformity and lighting performance. Now, we reported some optical properties with different arc tube structures of ceramic metal halide lamps.

  • PDF

Performance Analysis on Combined Horizontal Ground Source Heat Pump with Earth tube using EnergyPlus (EnergyPlus를 이용한 수평형의 지열 히트펌프와 어스튜브를 조합한 시스템의 성능 검토)

  • Cho, Sung-Woo
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.13 no.2
    • /
    • pp.22-29
    • /
    • 2017
  • This study is performed to performance of the combined system the GSHP (Ground Source Heat Pump) system with the Earth tube system using EnergyPlus program. The Earth tube system using fan is characteristics as supply lower (higher) air temperature than outdoor air temperature in cooling and heating seasons, the GSHP system is characteristics as small indoor air temperature variation range. As the results of Earth tube + GSHP system simulation, GSHP power can be reduced than the GSHP single operation as 17.3% in cooling seasons and 32.5% in heating seasons, the GSHP design capacity can be replaced more small size.

NUMERICAL ANALYSIS ON THE HEAT TRANSFER AND FLOW IN THE SHELL AND TUBE HEAT EXCHANGER (Shell & Tube 열교환기 Shell 측 열전달 및 유동에 대한 수치해석)

  • Lee, Sang-Hyuk;Lee, Myung-Sung;Hur, Nahm-Keon
    • Journal of computational fluids engineering
    • /
    • v.12 no.3
    • /
    • pp.13-19
    • /
    • 2007
  • A numerical simulation on the heat transfer and flow field was carried out to improve the performance of the shell and tube heat exchanger. The steady incompressible 3-D Navier-Stokes solution is obtained with the actual operational condition and geometry of the heat exchanger. Based on this study, it is noted that the present geometry of the heat exchanger causes poor heat transfer since the air inside shell does not flow through the tube bundle, but around it. The enhancement of the heat transfer can be achieved by the variation of the design factor like the sealing strip located on the top/bottom and middle of the baffle, but it causes the increasement of the pressure drop. In this paper, the effects of the location and size of the sealing strips and flow rate through the heat exchanger on the heat transfer and pressure drop are studied.

A Study on the Augmentation of Thermal Efficiency and the Development for the Fulidized Bed Combustor Untilizing Korean Low Grade Anthracite Coals (국산(國産) 저질무연탄(低質無煙炭) 연소용(燃燒用) 유동층(流動層) 연소로(燃燒爐) 개발(開發) 및 열효율(熱效率) 증대(增大)에 관한 연구(硏究))

  • Rhee, K.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.2
    • /
    • pp.112-118
    • /
    • 1990
  • Characteristics of heat transfer in a smooth and finned tube located vertically in atmospheric fluidized bed combustor which uses low grade anthracite coals was studied. Experiments to investigate the characteristics of heat transfer between smooth and finned tube are carried out and the results depend on particle size, fluidizing air velocity and bed temperature are summarized. It is found that heat transfer coefficient of the smooth and finned tube increases with decrease in particle diameter and increase in bed temperature. Furthermore, it is noted that heat transfer coefficient increase at the first with increase in the velocity of fluidizing air and tends to decrease at a certain fluidizing air velocity. The increase of heat transfer coefficient for the finned tube is appeared to be increased in 30% compared to that for the smooth tube.

  • PDF

Optimum Design of Thermoelastic Multi-Layer Cylindrical Tube (열탄성 거동을 나타내는 다층 실린더의 최적설계)

  • 조희근;박영원
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.179-188
    • /
    • 2000
  • Multi-disciplinary optimization design concept can provide a solution to many engineering problems. In the field of structural analysis, much development of size or topology optimization has been achieved in the application of research. This paper demonstrates an optimum design of a multi-layer cylindrical tube which behaves thermoelastically. A multi-layer cylindrical tube that has several different material properties at each layer is optimized within allowable stress and temperature range when mechanical and thermal loads are applied simultaneously. When thermal loads are applied to a multi-layer tube, stress phenomena become complicated due to each layer's thermal expansion and the layer thicknesses. Factors like temperature; stress; and material thermal thicknesses of each tube layer are very difficult undertaking. To analyze these problems using an efficient and precise method, the optimization theories are adopted to perform thermoelastic finite element analysis.

  • PDF

Optical Properties with Arc Tube Structure of Ceramic Metal Halide lamps (세라믹 메탈할라이드 램프 아크튜브 구조에 따른 광학적 특성)

  • Lee, Joo-Hoo;Yang, Jong-Kyung;Kim, Nam-Goon;Jang, Hyeok-Jin;Park, Dae-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2244-2248
    • /
    • 2008
  • High intensity metal halide discharge lamp performance, specifically the generated luminous flux and light color content, depends critically on the arc tube design. Factors influencing the design and consequent lamp efficacy include : lamp size, geometry, arc tube composition, fill chemistry, electrode design and excitation modes. Shaping of Polycrystalline Alumina(PCA) can be realized by conventional ceramic processes. Several processes are applied nowadays. Well-known in the ceramic high pressure field for decades are the pressing and the extrusion method. Newly developed slurry and precious forming technologies give the one-body seamless tubes, which improve thickness uniformity and lighting performance. Now, we reported some optical properties with different arc tube structures of ceramic metal halide lamps.

VARIATION OF LOCAL POOL BOILING HEAT TRANSFER COEFFICIENT ON 3-DEGREE INCLINED TUBE SURFACE

  • Kang, Myeong-Gie
    • Nuclear Engineering and Technology
    • /
    • v.45 no.7
    • /
    • pp.911-920
    • /
    • 2013
  • Experimental studies on both subcooled and saturated pool boiling of water were performed to obtain local heat transfer coefficients on a $3^{\circ}$ inclined tube of 50.8 mm diameter at atmospheric pressure. The local values were determined at every $45^{\circ}$ from the very bottom to the uppermost of the tube periphery. The maximum and minimum local coefficients were observed at the azimuthal angles of $0^{\circ}$ and $180^{\circ}$, respectively, in saturated water. The locations of the maxima and the minima were dependent on the inclination angle of the tube as well as the degree of subcooling. The major heat transfer mechanisms were considered to be liquid agitation generated by the sliding bubbles and the creation of big size bubbles through bubble coalescence. As a way of quantifying the heat transfer coefficients, an empirical correlation was suggested.

Prediction of Service Life of a Respirator Cartridge by the Occupational Environment -Simulation of Breakthrough Curve for Respirator Cartridge and Sampling Tube- (작업현장의 환경조건에 따른 방독마스크 정화통의 수명예측 -모사에 의한 정화통과 샘플관의 파과시간-)

  • 김덕기;신창섭
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.2
    • /
    • pp.89-95
    • /
    • 1996
  • To predict the service life of an organic vapor respirator cartridge, the breakthrough curve of respirator was simulated using a fixed-bed adsorption model and compared with that of sampling tube. And the effects of bed porosity, length to diameter ratio and flow rate of the sampling tube were studied. The life time of respirator cartridge was increased with the decrease of particle size and bed porosity. And the breakthrough time of sampling tube was affected by the flow rate, however not by the length to diameter ratio. The 10% breakthrough time of the sampling tube was corresponded with that of cartridge.

  • PDF

형상에 따른 초전도 튜브의 전기적 특성변화

  • Jang, G.E.;Park, C.W.;Ha, D.W.;Seung, T.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.527-530
    • /
    • 2004
  • High-temperature Superconductor(HTS) tubes were fabricated in term of different diameter, length and thickness by centrigugal forming method. For powder melting by induction the optimum range of melting temperatures and preheating temperature were $1050^{\circ}C{\sim}1100^{\circ}C\;amd\;550^{\circ}C$ for 30min, respectively. The mould renting speed was 1000rpm. A tube was annealed at $840^{\circ}C$ for 72hours in oxygen atmosphere. The plate-like grains were well developed along the renting direction and typical grain size was about more than $40{\mu}m$. It was found that Ic values increased with increasing the tube diameter while the Ic decreased with increasing tube thickness. Also Ic decreased with increasing the tube length. The measured Ic in $50mm{\times}70mm{\times}25mm$ tube was about 896Amp.

  • PDF