• 제목/요약/키워드: Tube Furnace

검색결과 206건 처리시간 0.027초

증착 구간에서의 온도 제어에 따른 SiO2 초미립자의 증착 특성 고찰 (A Study on the Deposition Characteristics of Ultrafine SiO2 Particles by Temperature Control in Deposition Zone)

  • 유수종;김교선
    • 산업기술연구
    • /
    • 제16권
    • /
    • pp.157-168
    • /
    • 1996
  • The deposition characteristics of ultrafine $SiO_2$ particles were investigated in a tube furnace reactor theoretically and experimentally controlling tube wall temperature in deposition zone. The model equations such as mass and energy balance equations and aerosol dynamic equations inside reactor and deposition tube were solved to predict the particle growth and deposition. The particle size and deposition efficiencies of $SiO_2$ particles were calculated, changing the process conditions such as tube furnace setting temperature, total gas flow rate inlet $SiCl_4$ concentration and were compared with the experimental results.

  • PDF

촉매 화학기상증착 공정에서 온도구배 설정을 통한 타이타늄 기판에서의 CNT 성장 거동 (CNT Growth Behavior on Ti Substrate by Catalytic CVD Process with Temperature Gradient in Tube Furnace)

  • 박주혁;변종민;김형수;석명진;오승탁;김영도
    • 한국분말재료학회지
    • /
    • 제21권5호
    • /
    • pp.371-376
    • /
    • 2014
  • In this study, modified catalytic chemical vapor deposition (CCVD) method was applied to control the CNTs (carbon nanotubes) growth. Since titanium (Ti) substrate and iron (Fe) catalysts react one another and form a new phase ($Fe_2TiO_5$) above $700^{\circ}C$, the decrease of CNT yield above $800^{\circ}C$ where methane gas decomposes is inevitable under common CCVD method. Therefore, we synthesized CNTs on the Ti substrate by dividing the tube furnace into two sections (left and right) and heating them to different temperatures each. The reactant gas flew through from the end of the right tube furnace while the Ti substrate was placed in the center of the left tube furnace. When the CNT growth temperature was set $700/950^{\circ}C$ (left/right), CNTs with high yield were observed. Also, by examining the micro-structure of CNTs of $700/950^{\circ}C$, it was confirmed that CNTs show the bamboo-like structure.

맥동연소기술이 접목된 복사관 버너에서의 NOX 배출 특성 ([ NOX ] Emission Characteristics in Radiant Tube Burner with Oscillating Combustion Technology)

  • 조한창;조길원;김후중
    • 대한기계학회논문집B
    • /
    • 제32권2호
    • /
    • pp.100-106
    • /
    • 2008
  • An experimental study was carried out in a small-scale test furnace to investigate the performance, such as $NO_X$ emission, enhancement of heat transfer, uniformity of temperature, and etc, of oscillating combustion applied in radiant tube burner system. A premixed type burner and a cyclic oscillating control valve were designed and used. The fuel, used commercial LPG in this study, was only oscillated using the cyclic oscillating control valve. As oscillating combustion was applied in radiant tube burner system, it is found that $NO_X$ emission, compared to no oscillation, could be reduced by 38% at $90{\sim}120rpm\;(1.5{\sim}2.0Hz)$. However, as oscillating frequency was increased, effect of abatement of $NO_X$ emission is gradually reduced. From the measurement of furnace heating time from $100^{\circ}C$ to $720^{\circ}C$, heat transfer is increased by 11.5% at the oscillation of 120rpm. Temperature distribution of radiant tube surface is more uniform at oscillation of 120rpm with decrease of the peak temperature and increase of low temperature. From these results, it is confirmed that oscillating combustion is useful in radiant tube burner system.

동관 벤딩을 위한 열처리로 설계 및 성능평가에 관한 연구 (A Study on the Performance Evaluation of Heat Treatment Furnace Design for Copper Tube Bending)

  • 박대광;김재열;고가진
    • 한국기계가공학회지
    • /
    • 제15권1호
    • /
    • pp.136-144
    • /
    • 2016
  • The air-conditioning industry is closely related to types of lifestyles, climate, and products. With the improvement of national income, the pursuit of pleasant living and working environments, and South Korea's four seasons and distinct climatic conditions, demand for air conditioning has increased. In addition, the industry is becoming increasingly precise and cooperative, and the increase in the domestic production of sophisticated air conditioning and continued growth of future industrial cooperation are expected to rapidly rise. Accordingly, the study of air piping systems can improve the productivity and quality of products and cost savings and can achieve vibration reduction. Additionally, using a heat treatment furnace for copper tube annealing treatment reduces the risk of using an oxy-acetylene torch.

PDTF를 이용한 석탄가스화 특성 실험 (Pressurized Drop Tube Furnace Tests of Global Gasification Characteristics of Coal)

  • 신용승;최상민;안달홍
    • 에너지공학
    • /
    • 제8권4호
    • /
    • pp.560-566
    • /
    • 1999
  • 가압 조건하에서의 석탄가스화 특성을 규명하기위해 , 온도 압력 , 산소/석탄비, 수증기/석탄비 등을 변화시켜가며 로토탄(sub A)에 대하여 PDTF(Pressuized drop tube furnace)실험을 수행하였다. 실험결과, 상압 조건에서보다 가압조건에서의 가스화가 탄소전환율과 냉가스효율의 측면에서 더 유리한 것으로 측정되었다. 최대의 냉가스효율을 보이는 산소/석탄비의 증가가 냉가스효율의 증가를 가져왔다. 압력이 증가할수록 열분해에 의한 탄소전환의 비중은 감소하고 대신 기고반응에 의한 탄소전환의 비중이 증가하였다.

  • PDF

PDTF를 이용한 석탄가스화 특성 실험 (Pressurized drop tube furnace tests of global gasification characteristics of coal)

  • 신용승;최상민;안달홍
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1999년도 춘계 학술발표회 논문집
    • /
    • pp.23-31
    • /
    • 1999
  • 가압 조건하에서의 석탄가스화 특성을 규명하기 위해, 온도, 압력, 산소/석탄비, 수증기/석탄비 등을 변화시켜가며 로토탄(Sub A)에 대하여 PDTF(Pressurized drop tube furnace) 실험을 수행하였다. 실험결과, 상압 조건에서보다 가압조건에서의 가스화가 탄소 전환율과 냉가스효율의 측면에서 더 유리한 것으로 측정되었다. 최대의 냉가스효율을 보이는 산소/석탄비(무게기준)는 0.5∼0.7(g/g)로 측정되었고, 온도가 충분히 높은 경우에만 수증기/석탄비의 증가가 냉가스효율의 증가를 가져왔다. 압력이 증가할수록 열분해에 의한 탄소전환의 비중은 감소하고 대신 기고반응(heterogeneous reaction)에 의한 탄소전환의 비중이 증가하였다.

  • PDF

Catalytic growth of single wall carbon nanotubes by laser vaporization and its purification and The carbon nanotube growth on the Si substrate by CVD method

  • Lee, Sung won;Jung in Sohn;Lee, Seonghoon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2000년도 제18회 학술발표회 논문개요집
    • /
    • pp.213-213
    • /
    • 2000
  • Direct laser vaporization of transition-metal(Co, Ni)/graphite composite pellet produced single wall carbon naotubes(SWNT) in the condensing vapor in a heated flow cylinder-type tube furnace, Transition metal/graphite composite pellet target was made by mixing graphite, Co, and Ni in 98:1:1 atomic weight ratios, pressing the mixed powder, and curing it. The target was placed in a tube furnace maintained at 1200$^{\circ}C$ and Ar inert collision gas continuously flowed into the tube. The 2nd harmonic, 532nm wavelength light from Nd-YAG laser was used to vaporize the tube. The carbon nanotubes produced by the laser vaporization were accumulated on quartz tube wall. The raw carbon nanotube materials were purified with surfactants(Triton X-100) in a ultrasonicator. These carbon nanotubes were analyzed using SEM, XRD, and Raman spectroscopic method. The carbon nanotube growth on the Ni-patterned Si substrate was investigated by the CVD process. Transition-metal, Ni and CH4 gas were used as a catalyst and a reactant gas, respectively. The structure and the phonon frequencies of the carbon nanotubes formed on the patterned Si substrate were measured by SEM and Raman spectrometer.

  • PDF

금속섬유 버너를 채택한 0.5 t/h 급 무연소실 보일러의 열전달 특성 (Heat Transfer Characteristics of 0.5 t/h Class Non-Furnace Boiler with a Metal Fiber Burner)

  • 안준;김종진
    • 대한기계학회논문집B
    • /
    • 제35권2호
    • /
    • pp.215-220
    • /
    • 2011
  • 산업용 보일러의 열효율을 높이고 체적을 줄이기 위하여 0.5 t/h 급 무연소실 보일러를 개발하였다. 별도의 연소실이 없이 증발관이 화염에 노출된 구조에서 화염 안정성을 확보하기 위하여 금속섬유버너를 채택하였다. 증발관은 관군의 형태로 버너 하류에 배치되고 하류에 설치된 증발관에는 휜을 설치하여 열교환 면적을 확보하였다. 무연소실 보일러는 관군에 대한 열전달 관계식으로부터 설계하였고 본 연구에서는 시제품에 대한 실험 및 보일러 내부의 유동 및 열전달에 대한 수치해석을 수행하여 관군에 대한 관계식을 적용한 설계와 비교하였다.

튜브 전기로를 이용한 TiO2 나노입자의 합성 및 특성 분석 (Synthesis and Analysis of Nanosized TiO2 Particles Using a Tube Furnace)

  • 배귀남;현정은;이태규;정종수
    • 한국대기환경학회지
    • /
    • 제20권3호
    • /
    • pp.411-419
    • /
    • 2004
  • Titania particles are widely used as a photocatalyst to treat various contaminants in air and water. Titania particles were formed by vapor-phase oxidation of titanium tetraisopropoxide (TTIP) in a tube furnace between 773 and 1,273 K. The effect of process variables such as furnace temperature, flow rate of carrier air, and flow rate of sheath air on powder size and phase characteristics was investigated using a scanning mobility particle sizer (SMPS), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The size distribution of synthesized titania particles was characterized with mode diameter and peak concentration. The mode diameter ranging from 20 to 80 nm decreased with increasing flow rates of sheath air and carrier air, and increased with increasing furnace temperature. The peak concentration increased with increasing flow rates of sheath air and carrier air The best synthetic condition for high production rate can be derived from the experimental data set represented by mode diameter and peak concentration. The crystal structure of synthesized titania particles was found to be anatase phase, ensuring high photocatalytic potential.