• 제목/요약/키워드: Tube Furnace

검색결과 206건 처리시간 0.047초

Package 수관 보일러의 연소실 설계에 관한 연구 (Study on Furnace Design for Packaged Water-Tube Boilers)

  • 인종수
    • 한국산업융합학회 논문집
    • /
    • 제1권2호
    • /
    • pp.13-19
    • /
    • 1998
  • A computer simulation program for the design of furnace witjin pakaged water-tube boilres is developed and the developed computer program is successfully applied to design the furnace for packaged water-tube boiler. The model by experiment and the model by Hottel are used to predict the exit gas temperature of furnace. The result by two models is discussed and is shown that in the case of constant cross section in furnace, the result is same but in changing the configuration of cross section, the difference by two models is not small.

  • PDF

기상응축 열교환을 이용한 고정밀 등온 가열로 개발 (Development of Heat-treatment Furnace with Maximum Uniform Zone using Gas-phase Condensing Heat Exchange)

  • 홍현선;공만식;강환국
    • 열처리공학회지
    • /
    • 제22권3호
    • /
    • pp.162-168
    • /
    • 2009
  • A horizontal tube furnace with a wide uniform-temperature zone was developed using isothermal characteristics of a heat pipe. The heat pipe heating system consists of a concentric annular shaped stainless-steel container, sodium as a working fluid and a screen mesh wick structure. The performance test of the heat pipe revealed that temperature changes along seven consecutive positions of the heat pipe outer wall were less than${\pm}0.1^{\circ}C$, thereby ensuring the high isothermal property. The isothermal property of the heat pipe-adapted tube fumace was investigated and compared to a conventional non-heat pipe type tube furnace. The temperature distribution measurement showed that the uniform temperature zone, in which temperature change is less than${\pm}$1$^{\circ}$C, of the heat pipe employed tube furnace system was about three times longer compared to the conventional tube furnace system.

에틸렌 반응로에 대한 복합 열전달 해석 (Conjugate Heat Transfer Analysis of an Ethylene Furnace)

  • 안준;박진우
    • 설비공학논문집
    • /
    • 제27권10호
    • /
    • pp.515-519
    • /
    • 2015
  • Conjugate heat transfer analysis for an ethylene furnace was carried out based on numerical simulation. Detailed distributions of velocity vectors, chemical species, and temperature inside the furnace are presented and discussed. Von Mises stress and heat flux at the tube surface were also evaluated to elucidate mechanisms regarding failure of the tube. Maximum stress was found at the upstream elbow of the tube, which did not coincide with the location of maximum heat flux. This implies that thermal stress at a steady state would not be a dominant component of the stress. Degradation of the material, as well as the system arrangement, should be considered in order to accurately predict the lifetime of the tube material in the furnace.

전기가열 튜브로를 이용한 나노/서브마이크론 입자의 발생 (Generation of Nano/Submicron Particles Using an Electrically Heated Tube Furnace)

  • 지준호;배양일;황정호;배귀남
    • 대한기계학회논문집B
    • /
    • 제27권12호
    • /
    • pp.1734-1743
    • /
    • 2003
  • Aerosol generator using an electrically heated tube furnace is a stable apparatus to supply nanometer sized aerosols by using the evaporation and condensation processes. Using this method, we can generate highly concentrated polydisperse aerosols with relatively narrow size distribution. In this work, characteristics of particle size distribution, generated from a tube furnace, were experimentally investigated. We evaluated effects of several operation parameters on particle generation: temperature in the tube furnace, air flow rates through the tube, size of boat containing solid sodium chloride(NaCl). As the temperature increased, the geometric mean diameter increased and the total number concentration also increased. Dilution with air affected the size distribution of the particles due to coagulation. A smaller sized boat, which has small surface area to contact with air, brings smaller particles of narrow size distribution in comparison of that of a larger boat. Finally, we changed the electrical mobility diameter of aggregate sodium chloride particles by varying relative humidity of dilution air, and obtained non-aggregate sodium chloride particles, which are easy to generate exact monodisperse particles.

Drop Tube Furnace를 이용한 순산소연소 배가스 로내탈황에 관한 연구 (Study on the In-Furnace Desulfurization for Oxy-Fuel Combustion Flue Gases Using Drop Tube Furnace)

  • 안영모;조항대;최원길;박영성;길상인;이형근
    • Korean Chemical Engineering Research
    • /
    • 제47권4호
    • /
    • pp.512-517
    • /
    • 2009
  • 순산소 연소에서 $SO_2$ 농도는 배가스의 재순환으로 인해 기존의 공기연소에 비해 3배 이상 높게 나타나고, $CO_2$ 농도와 $SO_2$ 농도가 높기 때문에 탈황현상이 기존의 공기 연소와는 다르게 나타난다. 본 연구에서는 순산소 연소조건에서 로내탈황 특성을 알아보기 위해 Drop Tube Furnace(DTF)를 이용하여, 반응온도, 유입 $SO_2$ 농도 그리고 Ca/S 비 등의 운전변수에 따른 $SO_2$ 제거효율을 측정하였으며 수분의 영향에 대해서도 알아보았다. 반응온도, 유입 $SO_2$ 농도 그리고 Ca/S 비가 증가함에 따라 $SO_2$ 제거효율은 증가하였고 유입가스 내 수분이 존재할 경우 $SO_2$ 제거효율은 약 4~6% 증가하는 것으로 나타났다.

석회석 분말을 이용한 노내 고온 건식 탈황 특성 연구 (Effect of Limestone Characteristics on In-Furnace Desulfurization under Hot Gas Combustion)

  • 김상인;이병화;안기주;황민영;김승모;전충환
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.43-45
    • /
    • 2012
  • The effect of limestone characteristics on in-furnace desulfurization was experimentally investigated at hot gas combustion condition in a drop tube furnace (DTF). Flue gas was measured by Gas analyzer in order to figure out $SO_2$ content. The experiments were performed under excess sulfur 3000ppm condition to examine the effect of operating variables such as reaction temperatures, Ca/S ratios on the $SO_2$ removal efficiencies. The results show that the $SO_2$ removal efficiency increased with reaction temperature and Ca/S ratio increase. When considering the economics, $1200^{\circ}C$ and Ca/S ratio 2 condition is optimized to reduce $SO_2$ emission.

  • PDF

튜브형 가열로 반응기를 이용한 초미립 $SiO_2$ 입자의 제조 및 증착에 대한 수치모사 (The Numerical Simulation of Ultrafine $SiO_2$ Particle Fabrication and Deposition by Using the Tube Furnace Reactor)

  • 김교선;현봉수
    • 한국세라믹학회지
    • /
    • 제32권11호
    • /
    • pp.1246-1254
    • /
    • 1995
  • A numerical model for fabrication and deposition of ultrafine SiO2 particles were proposed in the simplified horizontal MCVD apparatus using tube furnace reactor. The model equations such as energy and mass balance equations and the 0th, 1st and 2nd moment balance equations of aerosols were considered in the reactor. The phenomena of SiCl4 chemical reaction, SiO2 particle formation and coagulation, diffusion and thermophoresis of SiO2 particles were included in the aerosol dynamic equation. The profiles of gas temperature, SiCl4 concentration and SiO2 particle volume were calculated for standard conditions. The concentrations, sizes and deposition efficiencies of SiO2 particles were calculated, changing the process conditions such as tube furnace setting temperature, total gas flow rate and inlet SiCl4 concentration.

  • PDF

광섬유 생산용 유리섬유 인출공정에 대한 복사 열전달 해석 (RADIATIVE HEAT TRANSFER ANALYSIS OF GLASS FIBER DRAWING IN OPTICAL FIBER MANUFACTURING)

  • 김경진;김동주;곽호상
    • 한국전산유체공학회지
    • /
    • 제16권1호
    • /
    • pp.22-29
    • /
    • 2011
  • In this study, the glass fiber drawing from a silica preform in the furnace for the optical fiber manufacturing process is numerically simulated by considering the radiative heating of cylindrically shaped preform. The one-dimensional governing equations of the mass, momentum, and energy conservation for the heated and softened preform are solved as a set of the boundary value problems along with the radiative transfer approximation between the muffle tube and the deformed preform shape, while the furnace heating is modeled by prescribing the temperature distribution of muffle tube. The temperature-dependent viscosity of silica plays an important role in formation of preform neck-down profile when the glass fiber is drawn at high speed. The calculated neck-down profile of preform and the draw tension are found to be reasonable and comparable to the actual results observed in the optical fiber industry. This paper also presents the effects of key operating parameters such as the muffle tube temperature distribution and the fiber drawing speed on the preform neck-down profile and the draw tension. Draw tension varies drastically even with the small change of furnace heating conditions such as maximum heating temperature and heating width, and the fine adjustment of furnace heating is required in order to maintain the appropriate draw tension of 100~200 g.