• Title/Summary/Keyword: Tsai model

Search Result 150, Processing Time 0.022 seconds

Modeling and Evaluating Inventory Replenishment for Short Life-cycle Products

  • Wang, Ching-Ho;Lint, Shih-Wei;Chou, Shuo-Yan;Tsai, Chun-Hsiang
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.34 no.4
    • /
    • pp.386-397
    • /
    • 2008
  • Due to the rapid advancement of technologies, a growing number of innovative products with a short life-cycle have been introduced to the market. As the life-cycles of such products are shorter than those of durable goods, the demand variation during the life-cycle adds to the difficulty of inventory management. Traditional inventory planning models and techniques mostly deal with products that have long life-cycles. The assumptions on the demand pattern and subsequent solution approaches are generally, not suitable for dealing with products with short life-cycles. In this research, inventory replenishment problems based on the logistic demand model are formulated and solved to facilitate the management of products with short life-cycles. An extended Wagner- Whitin approach is used to determine the replenishment cycle, schedules and lot-sizes.

Investigation on bragg reflection of surface water waves induced by a train of fixed floating pontoon breakwaters

  • Ouyang, Huei-Tau;Chen, Kue-Hong;Tsai, Chi-Ming
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.6
    • /
    • pp.951-963
    • /
    • 2015
  • The water wave characteristics of Bragg reflections from a train of fixed floating pontoon breakwaters was studied numerically. A numerical model of boundary discretization type was developed to calculate the wave field. The model was verified by comparing to analytical data in literature and good agreements were achieved. Series of parametric studies were conducted systematically to investigate the dependence of the reflected coefficients by the Bragg scattering on the design variables, including the spacing between the breakwaters, the total number of installed breakwaters, the draft and width do the breakwater, and wave length. Certain wave characteristics of the Bragg reflections were observed and discussed in details which might be of help for practical engineering applications in shoreline protection from incident waves.

Analytical solution of buckling problem in plates reinforced by Graphene platelet based on third order shear deformation theory

  • Zhou, Linyun;Najjari, Yasaman
    • Steel and Composite Structures
    • /
    • v.43 no.6
    • /
    • pp.725-734
    • /
    • 2022
  • In this paper, buckling analyses of nanocomposite plate reinforced by Graphen platelet (GPL) is studied. The Halphin-Tsai model is used for obtaining the effective material properties of nanocomposite plate. The nanocomposite plate is modeled by Third order shear deformation theory (TSDT). The elastic medium is simulated by Winkler model. Employing relations of strains-displacements and stress-strain, the energy equations of the plate are obtained and using Hamilton's principle, the governing equations are derived. The governing equations are solved based on analytical solution. The effect of GPL volume percent, geometrical parameters of plate and elastic foundation on the buckling load are investigated. Results show that with increasing GPLs volume percent, the buckling load increases. In addition, elastic medium can enhance the values of buckling load significantly.

Nonlinear finite element vibration analysis of functionally graded nanocomposite spherical shells reinforced with graphene platelets

  • Xiaojun Wu
    • Advances in nano research
    • /
    • v.15 no.2
    • /
    • pp.141-153
    • /
    • 2023
  • The main objective of this paper is to develop the finite element study on the nonlinear free vibration of functionally graded nanocomposite spherical shells reinforced with graphene platelets under the first-order shear deformation shell theory and von Kármán nonlinear kinematic relations. The governing equations are presented by introducing the full asymmetric nonlinear strain-displacement relations followed by the constitutive relations and energy functional. The extended Halpin-Tsai model is utilized to specify the overall Young's modulus of the nanocomposite. Then, the finite element formulation is derived and the quadrilateral 8-node shell element is implemented for finite element discretization. The nonlinear sets of dynamic equations are solved by the use of the harmonic balance technique and iterative method to find the nonlinear frequency response. Several numerical examples are represented to highlight the impact of involved factors on the large-amplitude vibration responses of nanocomposite spherical shells. One of the main findings is that for some geometrical and material parameters, the fundamental vibrational mode shape is asymmetric and the axisymmetric formulation cannot be appropriately employed to model the nonlinear dynamic behavior of nanocomposite spherical shells.

THE APPLICATION OF THEORY OF CONSTRAINT IN SCHEDULING

  • Tsung-Chieh Tsai;Min-Lan Young
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.902-907
    • /
    • 2005
  • This study was undertaken to develop a comprehensive scheduling method which applied the core concept(DBR) of TOC to PERT, and to combine Monte Carlo Simulation to revise the uncertainties of activities then to eliminate project duration uncertainty. Most of the project duration overlooks the fact that in spite of minimizing the project duration, the uncertainty of constrained resources still puts the reliability of project duration in jeopardy. For the contractor, however, the most important thing is to comply the project scheduling with the planning to reduce the uncertainty of the project activities, operational interaction and project duration. In order to demonstrate that the model can be used in construction project, the scheduling of a steel-structure project was used as a case study to verify the validity of this model.

  • PDF

Robust Parameter Design via Taguchi's Approach and Neural Network

  • Tsai, Jeh-Hsin;Lu, Iuan-Yuan
    • International Journal of Quality Innovation
    • /
    • v.6 no.1
    • /
    • pp.109-118
    • /
    • 2005
  • The parameter design is the most emphasized measure by researchers for a new products development. It is critical for makers to achieve simultaneously in both the time-to-market production and the quality enhancement. However, there are difficulties in practical application, such as (1) complexity and nonlinear relationships co-existed among the system's inputs, outputs and control parameters, (2) interactions occurred among parameters, (3) where the adjustment factors of Taguchi's two-phase optimization procedure cannot be sure to exist in practice, and (4) for some reasons, the data became lost or were never available. For these incomplete data, the Taguchi methods cannot treat them well. Neural networks have a learning capability of fault tolerance and model free characteristics. These characteristics support the neural networks as a competitive tool in processing multivariable input-output implementation. The successful fields include diagnostics, robotics, scheduling, decision-making, prediction, etc. This research is a case study of spherical annealing model. In the beginning, an original model is used to pre-fix a model of parameter design. Then neural networks are introduced to achieve another model. Study results showed both of them could perform the highest spherical level of quality.

An Integration of Kano's Model and Exit-Voice Theory : A Case Study

  • Lee, Yu-Cheng;Hu, Hsiu-Yuan;Yen, Tieh-Min;Tsai, Chih-Hung
    • International Journal of Quality Innovation
    • /
    • v.10 no.2
    • /
    • pp.109-126
    • /
    • 2009
  • The purpose of this study was to examine overall customer satisfaction associated with medical service quality in Taiwan by integrated Kano's model and customer satisfaction index model. Another purpose was to confirmed nonlinear and asymmetric relationship of Customer Satisfaction and Quality Performance by the research outcome. By analyzing 1,100 patients or their family members, this study used the structural equation model (SEM) with AMOS software for data analysis. The results show that must-be attributes, one-dimensional attributes and attractive attributes had a direct effect on overall customer satisfaction, Surprisingly, overall customer satisfaction had positively influenced customer loyalty customer satisfaction had negatively influenced customer complaints. The study also found that customer complaints have direct effect on customer loyalty. Importantly, the study found out the must-be attributes, the attractive attributes and one-dimensional attributes increased, the level of overall customer satisfaction also increased. The customer satisfaction positively influences customer loyalty in medical service quality in Taiwan. The findings might reveal new insights for researchers dealing with quality of medical service and for hospital managers who devote resources exclusively to achieving highest possible levels of patient satisfaction.

Block Trading Based Volatility Forecasting: An Application of VACD-FIGARCH Model

  • TU, Teng-Tsai;LIAO, Chih-Wei
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.4
    • /
    • pp.59-70
    • /
    • 2020
  • The purpose of this study is to construct the ACD model for the block trading volume duration. The ACD model based on the block trading volume duration is referred to as Volume ACD (VACD) in this study. By integrating with GARCH-type models, the VACD based GARCH type models, which include VACD-GARCH, VACD-IGARCH and VACD-FIGARCH models, are set up. This study selects Chunghwa Telecom (CHT) Inc., offering the America Depository Receipt (ADR) in NYSE, to investigate the block trading volume duration in Taiwanese equity market. The empirical results indicate that the long memory in volume duration series increases dependence at level of volatility clustering by VACD (2,1)-FIGARCH (3,d,1) model. Moreover, the VACD (2,1)-IGARCH (1,1) exhibits relatively better performance of prediction on capturing block trading volume duration. This volatility model is more appropriate in this study to portray the change of the CHT Inc. prices and provides more information about the volatility process for investment strategy, which can be a reference indicator of financial asset pricing, hedging strategy and risk management.

Reliability Models for Application Software in Maintenance Phase

  • Chen, Yung-Chung;Tsai, Shih-Ying;Chen, Peter
    • Industrial Engineering and Management Systems
    • /
    • v.7 no.1
    • /
    • pp.51-56
    • /
    • 2008
  • With growing demand for zero defects, predicting reliability of software systems is gaining importance. Software reliability models are used to estimate the reliability or the number of latent defects in a software product. Most reliability models to estimate the reliability of software in the literature are based on the development lifecycle stages. However, in the maintenance phase, the software needs to be corrected for errors and to be enhanced for the requests from users. These decrease the reliability of software. Software Reliability Growth Models (SRGMs) have been applied successfully to model software reliability in development phase. The software reliability in maintenance phase exhibits many types of systematic or irregular behaviors. These may include cyclic behavior as well as long-term evolutionary trends. The cyclic behavior may involve multiple periodicities and may be asymmetric in nature. In this paper, SGRM has been adapted to develop a reliability prediction model for the software in maintenance phase. The model is established using maintenance data from a commercial shop floor control system. The model is accepted to be used for resource planning and assuring the quality of the maintenance work to the user.

Stability/instability of the graphene reinforced nano-sized shell employing modified couple stress model

  • Yao, Zhigang;Xie, Hui;Wang, Yulei
    • Wind and Structures
    • /
    • v.32 no.1
    • /
    • pp.31-46
    • /
    • 2021
  • The current research deals with, stability/instability and cylindrical composite nano-scaled shell's resonance frequency filled by graphene nanoplatelets (GPLs) under various thermal conditions (linear and nonlinear thermal loadings). The piece-wise GPL-reinforced composites' material properties change through the orientation of cylindrical nano-sized shell's thickness as the temperature changes. Moreover, in order to model all layers' efficient material properties, nanomechanical model of Halpin-Tsai has been applied. A functionally modified couple stress model (FMCS) has been employed to simulate GPLRC nano-sized shell's size dependency. It is firstly investigated that reaching the relative frequency's percentage to 30% would lead to thermal buckling. The current study's originality is in considering the multifarious influences of GPLRC and thermal loading along with FMCS on GPLRC nano-scaled shell's resonance frequencies, relative frequency, dynamic deflection, and thermal buckling. Furthermore, Hamilton's principle is applied to achieve boundary conditions (BCs) and governing motion equations, while the mentioned equations are solved using an analytical approach. The outcomes reveal that a range of distributions in temperature and other mechanical and configurational characteristics have an essential contribution in GPLRC cylindrical nano-scaled shell's relative frequency change, resonance frequency, stability/instability, and dynamic deflection. The current study's outcomes are practical assumptions for materials science designing, nano-mechanical, and micromechanical systems such as micro-sized sensors and actuators.