• Title/Summary/Keyword: Trust region method

Search Result 45, Processing Time 0.021 seconds

Punching Motion Generation using Reinforcement Learning and Trajectory Search Method (경로 탐색 기법과 강화학습을 사용한 주먹 지르기동작 생성 기법)

  • Park, Hyun-Jun;Choi, WeDong;Jang, Seung-Ho;Hong, Jeong-Mo
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.8
    • /
    • pp.969-981
    • /
    • 2018
  • Recent advances in machine learning approaches such as deep neural network and reinforcement learning offer significant performance improvements in generating detailed and varied motions in physically simulated virtual environments. The optimization methods are highly attractive because it allows for less understanding of underlying physics or mechanisms even for high-dimensional subtle control problems. In this paper, we propose an efficient learning method for stochastic policy represented as deep neural networks so that agent can generate various energetic motions adaptively to the changes of tasks and states without losing interactivity and robustness. This strategy could be realized by our novel trajectory search method motivated by the trust region policy optimization method. Our value-based trajectory smoothing technique finds stably learnable trajectories without consulting neural network responses directly. This policy is set as a trust region of the artificial neural network, so that it can learn the desired motion quickly.

CONVERGENCE OF SUPERMEMORY GRADIENT METHOD

  • Shi, Zhen-Jun;Shen, Jie
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.367-376
    • /
    • 2007
  • In this paper we consider the global convergence of a new super memory gradient method for unconstrained optimization problems. New trust region radius is proposed to make the new method converge stably and averagely, and it will be suitable to solve large scale minimization problems. Some global convergence results are obtained under some mild conditions. Numerical results show that this new method is effective and stable in practical computation.

Damage detection using finite element model updating with an improved optimization algorithm

  • Xu, Yalan;Qian, Yu;Song, Gangbing;Guo, Kongming
    • Steel and Composite Structures
    • /
    • v.19 no.1
    • /
    • pp.191-208
    • /
    • 2015
  • The sensitivity-based finite element model updating method has received increasing attention in damage detection of structures based on measured modal parameters. Finding an optimization technique with high efficiency and fast convergence is one of the key issues for model updating-based damage detection. A new simple and computationally efficient optimization algorithm is proposed and applied to damage detection by using finite element model updating. The proposed method combines the Gauss-Newton method with region truncation of each iterative step, in which not only the constraints are introduced instead of penalty functions, but also the searching steps are restricted in a controlled region. The developed algorithm is illustrated by a numerically simulated 25-bar truss structure, and the results have been compared and verified with those obtained from the trust region method. In order to investigate the reliability of the proposed method in damage detection of structures, the influence of the uncertainties coming from measured modal parameters on the statistical characteristics of detection result is investigated by Monte-Carlo simulation, and the probability of damage detection is estimated using the probabilistic method.

Gain Optimization of a Back-Stepping Controller for 6-Dof Underwater Robotic Platform (6 자유도 수중로봇 플랫폼의 백스테핑 제어를 위한 제어이득 최적화)

  • Kim, Jihoon;Kim, Jong-Won;Jin, Sangrok;Seo, TaeWon;Kim, Jongwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.10
    • /
    • pp.1031-1039
    • /
    • 2013
  • This paper presents gain optimization of a 6-DOF underwater robotic platform with 4 rotatable thrusters. To stabilize the 6-DOF motion of the underwater robotic platform, a back-stepping controller is designed with 6 proportional gains and 6 derivative gains. The 12 gains of the backstepping controller are optimized to decrease settling time in step response in 6-DOF motion independently. Stability criterion and overshoots are used as a constraint of the optimization problem. Trust-region algorithm and hybrid Taguchi-Random order Coordinate search algorithm are used to determine the optimal parameters, and the results by two methods are analyzed. Additionally, the resulting controller shows improved performance under disturbances.

A general method for active surface adjustment of cable net structures with smart actuators

  • Wang, Zuowei;Li, Tuanjie
    • Smart Structures and Systems
    • /
    • v.16 no.1
    • /
    • pp.27-46
    • /
    • 2015
  • Active surface adjustment of cable net structures is becoming significant when large-size cable net structures are widely applied in various fields, especially in satellite antennas. A general-duty adjustment method based on active cables is proposed to achieve active surface adjustment or surface profile reconfiguration of cable net structures. Piezoelectric actuators and voice coil actuators are selected for constructing active cable structures and their simplified mechanical models are proposed. A bilevel optimization model of active surface adjustment is proposed based on the nonlinear static model established by the direct stiffness method. A pattern search algorithm combined with the trust region method is developed to solve this optimization problem. Numerical examples of a parabolic cable net reflector are analyzed and different distribution types of active cables are compared.

The Semi-Analytic Structural Sensitivity Using Pade Approximation (Pade근사를 이용한 준해석 구조 민감도의 해석)

  • Dan, Ho-Jin;Lee, Byung-Chai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2631-2635
    • /
    • 2002
  • The semi-analytic sensitivity analysis using Pade approximation is presented for linear elastic structures. Although the semi-analytic method has several advantages, accuracy of the method prevents it from practical application. One of promising remedies is the use of geometric series for the matrix inversion. Though series expansion of order three has been successfully applied to the calculation of the structural sensitivity in the most range of the design perturbation, it is prone to have a slow convergence for large perturbation. To overcome this shortage, Pade approximation is introduced so that it can broaden the trust region of the perturbation without adding expansion terms. Numerical results show that the confident sensitivity can be obtained with tiny expenses of computation effort.

Comparative study of some algorithms for global optimization (광역최적화 방법론의 비교 연구)

  • Yang, Seung-Ho;Lee, Hyeon-Ju;Lee, Jae-Uk
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.11a
    • /
    • pp.693-696
    • /
    • 2006
  • Global optimization is a method for finding more reliable models in various fields, such as financial engineering, pattern recognition, process optimization. In this study, we compare and analyze the performance of the state-of-the-art global optimization techniques, which include Genetic Algorithm (DE,SCGA), Simulated Annealing (ASA, DSSA, SAHPS), Tabu & Direct Search (DTS, DIRECT), Deterministic (MCS, SNOBIT), and Trust-Region algorithm. The test functions for the experiments are Benchmark problems in Hedar & Fukushima (2004), which are evaluated with respect to efficiency and accuracy. Through the experiment, we analyse the computational complexity of the methods and finally discuss the pros and cons of them.

  • PDF

Churn Prediction Model using Logistic Regression (Logistic Regression을 이용한 이탈고객예측모형)

  • Jeong, Han-Na;Park, Hye-Jin;Kim, Nam-Hyeong;Jeon, Chi-Hyeok;Lee, Jae-Uk
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2008.10a
    • /
    • pp.324-328
    • /
    • 2008
  • 금융산업에서 고객의 이탈비율은 기대수익에 영향을 미친다는 점에서 예측이 필요한 부분이며 최근 들어 정확한 예측을 통한 비용관리가 이루어지면서 고객 이탈을 예측하는 것이 중요한 문제로 떠오르고 있다. 그러나 보험 고객 데이터가 대용량이고 불균형한 출력 값을 갖는 특성으로 인해 기존의 방법으로 예측 모델을 만드는 것이 적합하지 않다. 본 연구에서는 대용량 데이터를 처리하는 데 효과적으로 알려져 있는 Trust-region Newton method를 적용한 로지스틱 회귀분석을 통해 이탈고객을 예측하는 것을 주된 연구로 하며, 불균형한 데이터에서의 예측정확도를 높이기 위해 Oversampling, Clustering, Boosting 등을 이용하여 고객 데이터에 적합한 이탈 고객 예측 모형을 제시하고자 한다.

  • PDF

Optimal Design of a Heat Sink using the Sequential Approximate Optimization Algorithm (순차적 근사최적화 기법을 이용한 방열판 최적설계)

  • Park Kyoungwoo;Choi Dong-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.12
    • /
    • pp.1156-1166
    • /
    • 2004
  • The shape of plate-fin type heat sink is numerically optimized to acquire the minimum pressure drop under the required temperature rise. In constrained nonlinear optimization problems of thermal/fluid systems, three fundamental difficulties such as high computational cost for function evaluations (i.e., pressure drop and thermal resistance), the absence of design sensitivity information, and the occurrence of numerical noise are commonly confronted. Thus, a sequential approximate optimization (SAO) algorithm has been introduced because it is very hard to obtain the optimal solutions of fluid/thermal systems by means of gradient-based optimization techniques. In this study, the progressive quadratic response surface method (PQRSM) based on the trust region algorithm, which is one of sequential approximate optimization algorithms, is used for optimization and the heat sink is optimized by combining it with the computational fluid dynamics (CFD).

DNN-Based Dynamic Cell Selection and Transmit Power Allocation Scheme for Energy Efficiency Heterogeneous Mobile Communication Networks (이기종 이동통신 네트워크에서 에너지 효율화를 위한 DNN 기반 동적 셀 선택과 송신 전력 할당 기법)

  • Kim, Donghyeon;Lee, In-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.10
    • /
    • pp.1517-1524
    • /
    • 2022
  • In this paper, we consider a heterogeneous network (HetNet) consisting of one macro base station and multiple small base stations, and assume the coordinated multi-point transmission between the base stations. In addition, we assume that the channel between the base station and the user consists of path loss and Rayleigh fading. Under these assumptions, we present the energy efficiency (EE) achievable by the user for a given base station and we formulate an optimization problem of dynamic cell selection and transmit power allocation to maximize the total EE of the HetNet. In this paper, we propose an unsupervised deep learning method to solve the optimization problem. The proposed deep learning-based scheme can provide high EE while having low complexity compared to the conventional iterative convergence methods. Through the simulation, we show that the proposed dynamic cell selection scheme provides higher EE performance than the maximum signal-to-interference-plus-noise ratio scheme and the Lagrangian dual decomposition scheme, and the proposed transmit power allocation scheme provides the similar performance to the trust region interior point method which can achieve the maximum EE.