• 제목/요약/키워드: Truss model

검색결과 432건 처리시간 0.027초

Stuttgart 콘크리트 보 전단실험의 재해석을 통한 합리적 전단모델 연구 (A Study on the Rational Shear Model by interpretation of Stuttgart Beam Shear Test)

  • 김우;모귀석;정제평
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.884-889
    • /
    • 2003
  • Based on the reinterpretation of the well-known relationship between shear and the rate of change of bending moment in a reinforced concrete beam subject to combined shear and moment loads, the shortcomings of present truss models are discussed. The core of the theory is that a new perspective on the shear strength can be gained by viewing the internal stress filed in terms of the superposition of two base components of shear resistance; arch action and beam action. The arch action can be designed using the simple truss having curved compression chord, while the beam action between the two chords can be modeled using a parallel chord truss with MCFT or RA-STM. The compatibility of deformation associated to the two action is taken into account by employing a characteristic factor a. The new model was examined by the Stuttgart beam shear tests, and the results show that the present approach provides good estimates of stirrup contribution and concrete contributions.

  • PDF

횡보강근이 없는 콘크리트 부재의 전단강도 (Shear Strength of Concrete Members without Transverse Steel)

  • 김장훈
    • 콘크리트학회논문집
    • /
    • 제12권6호
    • /
    • pp.57-66
    • /
    • 2000
  • The truss analogy for the analysis of beam-columns subjected of shear and flexure is limited by the contribution of transverse and longitudinal steel and diagonal concrete compression struts. However, it should be noted that even though the behavior of reinforced concrete beam-columns after cracking can be modeled with the truss analogy, they are not perfect trusses but still structural elements with a measure of continuity provided by a diagonal tension field. The mere notion of compression field denotes that there should be some tension field coexisting perpendicularly to it. The compression field is assumed to form parallel to the crack plane that forms under combined flexure and shear. Therefore, the concrete tension field may be defined as a mechanism existing across the crack and resisting crack opening. In this paper, the effect of concrete tensile properties on the shear strength and stiffness of reinforced concrete beam-columns is discussed using the Gauss two-point truss model. The theoretical predictions are validated against the experimental observations. Although the agreement is not perfect, the comparison shows the correct trend in degradation as the inelasticity increases.

변환각 트러스 모델에 의한 철근콘크리트 기둥의 전단응력-전단변형률 관계 예측 (Prediction of Shear Stress-Strain Relationship of Reinforced Concrete Columns using Transformation Angle Truss Model)

  • 김상우;채희대;이정윤
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.361-364
    • /
    • 2004
  • This paper predicts the shear stress-strain relationship of reinforced concrete columns using Transformation Angle Truss Model (TATM) considered bending moment and axial force effects. Nine columns with various shear span-to-depth ratios and axial force ratios were tested to verify the theoretical results obtained from TATM. Shear stress-strain relationship obtained from TATM was agreed well with test results conducted by bis study than other truss models.

  • PDF

Seismic analysis of steel structure with brace configuration using topology optimization

  • Qiao, Shengfang;Han, Xiaolei;Zhou, Kemin;Ji, Jing
    • Steel and Composite Structures
    • /
    • 제21권3호
    • /
    • pp.501-515
    • /
    • 2016
  • Seismic analysis for steel frame structure with brace configuration using topology optimization based on truss-like material model is studied. The initial design domain for topology optimization is determined according to original steel frame structure and filled with truss-like members. Hence the initial truss-like continuum is established. The densities and orientation of truss-like members at any point are taken as design variables in finite element analysis. The topology optimization problem of least-weight truss-like continuum with stress constraints is solved. The orientations and densities of members in truss-like continuum are optimized and updated by fully-stressed criterion in every iteration. The optimized truss-like continuum is founded after finite element analysis is finished. The optimal bracing system is established based on optimized truss-like continuum without numerical instability. Seismic performance for steel frame structures is derived using dynamic time-history analysis. A numerical example shows the advantage for frame structures with brace configuration using topology optimization in seismic performance.

3차원 교량정보 모델링에 따른 IFC 기반 트러스교 구조해석정보 자동생성 모듈 (Automatic Generation Module of IFC-based Structural Analysis Information Model Through 3-D Bridge Information Modeling)

  • 이진훈;김효진;이상호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.809-812
    • /
    • 2007
  • Automatic generation method of structural analysis model data for a truss bridge is presented through 3-D bridge information modeling based on Industry Foundation Classes(IFC). The mapping schema is proposed between a steel bridge information model based on STEP and a truss bridge information model based on the IFC. The geometry information from mapping is presented by IFC model, and SAP 2000 that can import the IFC file performs the structural analysis. Numerical analysis for a truss bridge is performed in this paper.

  • PDF

Modeling nonlinear behavior of gusset plates in the truss based steel bridges

  • Deliktas, Babur;Mizamkhan, Akhaan
    • Structural Engineering and Mechanics
    • /
    • 제51권5호
    • /
    • pp.809-821
    • /
    • 2014
  • The truss based steel bridge structures usually consists of gusset plates which lose their load carrying capacity and rigidity under the effect of repeated and dynamics loads. This paper is focused on modeling the nonlinear material behavior of the gusset plates of the Truss Based Bridges subjected to dynamics loads. The nonlinear behavior of material is characterized by a damage coupled elsto-plastic material models. A truss bridge finite element model is established in Abaqus with the details of the gusset plates and their connections. The nonlinear finite element analyses are performed to calculate stress and strain states in the gusset plates under different loading conditions. The study indicates that damage initiation occurred in the plastic deformation localized region of the gusset plates where all, diagonal, horizontal and vertical, truss member met and are critical for shear type of failure due tension and compression interaction. These findings are agreed with the analytical and experimental results obtained for the stress distribution of this kind gusset plate.

Concrete stiffness matrices for membrane elements

  • Hsu, Thomas T.C.
    • Structural Engineering and Mechanics
    • /
    • 제5권5호
    • /
    • pp.599-608
    • /
    • 1997
  • The concrete stiffness matrices of membrane elements used in the finite element analysis of wall-type structures are reviewed and discussed. The behavior of cracked reinforced concrete membrane elements is first described by summarizing the constitutive laws of concrete and steel established for the two softened truss models (the rotating-angle softened-truss model and the fixed-angle softened-truss model). These constitutive laws are then related to the concrete stiffness matrices of the two existing cracking models (the rotating-crack model and the fixed-crack model). In view of the weakness in the existing models, a general model of the matrix is proposed. This general matrix includes two Poisson ratios which are not clearly understood at present. It is proposed that all five material properties in the general matrix should be established by new biaxial tests of panels using proportional loading and strain-control procedures.

트러스 형태에 따른 스태거드트러스 골조시스템의 내진성능 평가 (Seismic Performance Evaluation of Staggered Truss System by the Shape of Truss)

  • 홍윤수;유은종;나창순
    • 한국전산구조공학회논문집
    • /
    • 제30권5호
    • /
    • pp.397-404
    • /
    • 2017
  • 본 연구의 목적은 트러스의 형태를 바꿔가며 엇갈린 트러스(STF) 시스템의 내진성능을 평가하는 것이다. 예제 구조물은 10층의 철골조 사무실 건물이며, 시스템별로 각각 프랫트러스, 하우트러스, 와렌트러스, 케이트러스와 비렌딜트러스를 적용하였다. 중력하중, 풍하중, 지진하중을 고려한 구조해석을 실시하여 부재에 높은 DCR을 만족하는 단면을 산정한 후 고유주기, 밑면전단력과 층간변위를 산출하였다. 그 후, 역량스펙트럼법을 통해 1.2배의 설계지진(DE)과 최대고려지진(MCE)에 대한 성능점을 산정하고, STF 시스템의 항복여부 및 소성힌지의 분포를 파악하여 구조기준에서 제시한 목표성능수준을 만족하는지 살펴보았다. 평가 결과, 모든 시스템이 해당 목표성능수준을 만족하였으며, 시스템의 경제성 및 효율성을 따져보았을 때, PR10이나 VR10이 가장 적합한 것으로 나타났다.

초대형 구조모델을 활용한 쉘구조물의 용접변형 해석 (A weld-distortion analysis method of the shell structures using ultra structural FE model)

  • 하윤석;이명수
    • Journal of Welding and Joining
    • /
    • 제33권3호
    • /
    • pp.62-67
    • /
    • 2015
  • A very large shell-structure built in shipyards like ship hulls or offshore structures are joined by welding through full process. As the welding contains a high thermal cycle at a local area, the welded structures should be distorted unavoidably. Because a distorted ship block should be revised to the designed value before the next stage, the ability to predict and to control the weld distortion is an accuracy level of the yard itself. Despite the ship block size, several present thermal distortion methodologies can deal those sizes, but it is a different story to deal full ship size model. Even a fully constructed ship hull not remaining any welding can have an accuracy issue like outfitting installation problems. Any present thermal distortion methodology cannot accept this size for its recommended element size and the number. The ordinary welding breadth at erection stage is about 20~40 mm. It can hardly be a good choice to make finite element model of these sizes considering human effort and computational environment. The finite element model for structure analysis of a ship hull is prepared at front-end engineering design stage which is the first process of the project. The element size of the model is as fine as the longitudinal space, and it is not proper to obtain a weld distortion at the erection stage. In this study, a methodology is suggested that a weldment can be shrunk at original place instead of using structural finite element model. We cut the original shell elements at erection weld-line and put truss elements between the edges of cut elements for weld shrinkage. Additional truss elements are used to facsimile transverse weld shrinkage which cannot be from the weld-line truss element shrink. They attach to weld-line truss element like twigs from barks. The capacity of developed elements is verified through an accuracy check of erection process of a container vessel at the apt. hull. It can be a useful tool for verifying a centering accuracy after renew and for block-separating planning considering accuracy.

Behavior and resistance of truss-type shear connector for composite steel-concrete beams

  • Lima, Jerfson M.;Bezerra, Luciano M.;Bonilla, Jorge;Silva, Ramon S.Y.R.C.;Barbosa, Wallison C.S.
    • Steel and Composite Structures
    • /
    • 제36권5호
    • /
    • pp.569-586
    • /
    • 2020
  • The behavior of composite steel-concrete beams depends on the transmission of forces between two parts: the concrete slab and the steel I-beam. The shear connector is responsible for the interaction between these two parts. Recently, an alternative shear connector, called Truss Type connector, has been developed; it aligns efficient structural behavior, fast construction and implementation, and low cost when compared to conventional connectors applied in composite structures. However, there is still a lack of full understanding of the mechanical behavior of the Truss Type connector, due to its novelty. Thus, this study aims to analyze the influence of variation of geometric and physical parameters on the shear resistance of the Truss Type connector. In order to investigate those parameters, a non-linear finite element model, able to simulate push-out tests of Truss Type connectors, was specifically developed and validated with experimental results. A thorough parametric study, varying the height, the angle between rods, the diameter, and the concrete strength, was conducted to evaluate the shear resistance of the Truss Type connector. In addition, an equation to predict the resistance of the original Truss Type shear connector was proposed.