• 제목/요약/키워드: Troponin

검색결과 142건 처리시간 0.024초

C-Reactive Protein a Promising Biomarker of COVID-19 Severity

  • Fazal, Muntaha
    • 대한임상검사과학회지
    • /
    • 제53권3호
    • /
    • pp.201-207
    • /
    • 2021
  • The 2019 coronavirus outbreak poses a threat to scientific, societal, financial, and health resources. The complex pathogenesis of severe acute respiratory syndrome coronavirus centers on the unpredictable clinical progression of the disease, which may evolve abruptly and result in critical and life-threatening clinical complications. Effective clinical laboratory biomarkers that can classify patients according to risk are essential for ensuring timely treatment, and an analysis of recently published studies found cytokine storm and coagulation disorders were leading factors of severe COVID-19 complications. The following inflammatory, biochemical, and hematology biomarkers markers have been identified in COVID-19 patients; neutrophil to lymphocyte ratio, c-reactive protein, procalcitonin, urea, liver enzymes, lactate dehydrogenase, serum amyloid A, cytokines, d-dimer, fibrinogen, ferritin, troponin, creatinine kinase, and lymphocyte, leukocyte, and platelet counts. These factors are predictors of disease severity and some are involved in the pathogenesis of COVID-19. CRP is an acute-phase, non-specific serological biomarker of inflammation and infection and is related to disease severities and outcomes. In the present study, CRP levels were found to rise dramatically among COVID-19 patients, and our findings suggest CRP could be utilized clinically to predict COVID-19 prognosis and severity even before disease progression and the manifestation of clinical symptoms.

Neogambogic acid relieves myocardial injury induced by sepsis via p38 MAPK/NF-κB pathway

  • Fu, Wei;Fang, Xiaowei;Wu, Lidong;Hu, Weijuan;Yang, Tao
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권6호
    • /
    • pp.511-518
    • /
    • 2022
  • Sepsis-associated myocardial injury, an invertible myocardial depression, is a common complication of sepsis. Neogambogic acid is an active compound in garcinia and exerts anthelmintic, anti-inflammatory, and detoxification properties. The role of neogambogic acid in sepsis-associated myocardial injury was assessed. Firstly, mice were pretreated with neogambogic acid and then subjected to lipopolysaccharide treatment to induce sepsis. Results showed that lipopolysaccharide treatment induced up-regulation of biomarkers involved in cardiac injury, including lactate dehydrogenase (LDH), creatine kinase-MB (CK-MB), and troponin I (cTnI). However, pretreatment with neogambogic acid reduced levels of LDH, CK-MB, and cTnI, and ameliorated histopathological changes in the heart tissues of septic mice. Secondly, neogambogic acid also improved cardiac function in septic mice through reduction in left ventricular end-diastolic pressure, and enhancement of ejection fraction, fractional shortening, and left ventricular systolic mean pressure. Moreover, neogambogic acid suppressed cardiac apoptosis and inflammation in septic mice and reduced cardiac fibrosis. Lastly, protein expression of p-p38, p-JNK, and p-NF-κB in septic mice was decreased by neogambogic acid. In conclusion, neogambogic acid exerted anti-apoptotic, anti-fibrotic, and anti-inflammatory effects in septic mice through the inactivation of MAPK/NF-κB pathway.

Ginseng and ginsenosides on cardiovascular and pulmonary diseases; Pharmacological potentials for the coronavirus (COVID-19)

  • Ajay Vijayakumar;Jong-Hoon Kim
    • Journal of Ginseng Research
    • /
    • 제48권2호
    • /
    • pp.113-121
    • /
    • 2024
  • Since its outbreak in late 2019, the Coronavirus disease 2019 (COVID-19) pandemic has profoundly caused global morbidity and deaths. The COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has major complications in cardiovascular and pulmonary system. The increased rate of mortality is due to delayed detection of certain biomarkers that are crucial in the development of disease. Furthermore, certain proteins and enzymes in cellular signaling pathways play an important role in replication of SARS-CoV-2. Most cases are mild to moderate symptoms, however severe cases of COVID-19 leads to death. Detecting the level of biomarkers such as C-reactive protein, cardiac troponin, creatine kinase, creatine kinaseMB, procalcitonin and Matrix metalloproteinases helps in early detection of the severity of disease. Similarly, through downregulating Renin-angiotensin system, interleukin, Mitogen-activated protein kinases and Phosphoinositide 3-kinases pathways, COVID-19 can be effectively controlled and mortality could be prevented. Ginseng and ginsenosides possess therapeutic potential in cardiac and pulmonary complications, there are several studies performed in which they have suppressed these biomarkers and downregulated the pathways, thereby inhibiting the further spread of disease. Supplementation with ginseng or ginsenoside could act on multiple pathways to reduce the level of biomarkers significantly and alleviate cardiac and pulmonary damage. Therefore, this review summarizes the potential of ginseng extract and ginsenosides in controlling the cardiovascular and pulmonary diseases by COVID-19.

Application of Gel-based Proteome Analysis Techniques to Studying Post-mortem Proteolysis in Meat

  • Hwang, I.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권9호
    • /
    • pp.1296-1302
    • /
    • 2004
  • This study was conducted to evaluate the possible application of 2 D-SDS-PAGE (2 DE)-based proteome analysis techniques to the assessment of extreme proteolysis in postmortem skeletal muscle. Eight Hanwoo longissimus muscles were incubated immediately after slaughter for 24 h at 5$^{\circ}C$, 15$^{\circ}C$ or 36$^{\circ}C$. Warner Bratzler (WB)-shear force and ultrastructural configuration were determined at 24 h, and rate of proteolysis to 24 h was determined by 1 D-SDS-PAGE (1 DE) and 2 DE. In addition, tentative protein identification was performed from peptide mass fingerprints of MALDI-ToF analysis of major protein groups on 2 DE profiles. The result showed that although ultrastructural configuration was similar between the 5$^{\circ}C$ and 36$^{\circ}C$ treatments, meat at 5$^{\circ}C$ had higher WBshear force (approximately 5 kg greater). A higher rate of protein degradation at 36$^{\circ}C$ was observed based on Troponin-T degradation, 1 DE, and 2 DE analysis. This indicates that proteolysis during the early postmortem period was a significant determinant of shear force at 24 h. Little difference in proteolysis between 5$^{\circ}C$ and 15$^{\circ}C$ treatments was found based on classic 1 DE profile assessment. Meanwhile, considerable differences in the 2 DE profiles between the two treatments were revealed, with substantially higher rate of proteolysis at 15$^{\circ}C$ compared to 5$^{\circ}C$. Nuclease treatment improved 2 DE profile resolution. 400 ${\mu}$g and 600 ${\mu}$g of sample loading appeared to be appropriate for 24 cm pH 3-10 and pH 5-7 IPG strips, respectively. Protein detection and quantification of the 5$^{\circ}C$, 15$^{\circ}C$ and 36$^{\circ}C$ 2 DE profiles revealed 78, 163 and 232 protein spots respectively that were differentially modified in terms of their electrophoretic properties between approximately pI 5.3-7.7 with the molecular weight range of approximately 71-12 kDa. The current results demonstrated that 2 DE was a superior tool to 1 DE for characterising proteolysis in postmortem skeletal muscle.

Age-adjusted plasma N-terminal pro-brain natriuretic peptide level in Kawasaki disease

  • Jun, Heul;Ko, Kyung Ok;Lim, Jae Woo;Yoon, Jung Min;Lee, Gyung Min;Cheon, Eun Jung
    • Clinical and Experimental Pediatrics
    • /
    • 제59권7호
    • /
    • pp.298-302
    • /
    • 2016
  • Purpose: Recent reports showed that plasma N-terminal pro-brain natriuretic peptide (NT-proBNP) could be a useful biomarker of intravenous immunoglobulin (IVIG) unresponsiveness and coronary artery lesion (CAL) development in Kawasaki disease (KD). The levels of these peptides are critically influenced by age; hence, the normal range and upper limits for infants and children are different. We performed an age-adjusted analysis of plasma NT-proBNP level to validate its clinical use in the diagnosis of KD. Methods: The data of 131 patients with KD were retrospectively analyzed. The patients were divided into 2 groups-group I (high NT-proBNP group) and group II (normal NT-proBNP group)-comprising patients with NT-proBNP concentrations higher and lower than the 95th percentile of the reference value, respectively. We compared the laboratory data, responsiveness to IVIG, and the risk of CAL in both groups. Results: Group I showed significantly higher white blood cell count, absolute neutrophil count, C-reactive protein level, aspartate aminotransferase level, and troponin-I level than group II (P<0.05). The risk of CAL was also significantly higher in group I (odds ratio, 5.78; P=0.012). IVIG unresponsiveness in group I was three times that in group II (odds ratio, 3.35; P= 0.005). Conclusion: Age-adjusted analysis of plasma NT-proBNP level could be helpful in predicting IVIG unresponsiveness and risk of CAL development in patients with KD.

Ginseng total saponin attenuates myocardial injury via anti-oxidative and anti-inflammatory properties

  • Aravinthan, Adithan;Kim, Jong Han;Antonisamy, Paulrayer;Kang, Chang-Won;Choi, Jonghee;Kim, Nam Soo;Kim, Jong-Hoon
    • Journal of Ginseng Research
    • /
    • 제39권3호
    • /
    • pp.206-212
    • /
    • 2015
  • Background: Ginseng total saponin (GTS) contains various ginsenosides. These ginsenosides are widely used for treating cardiovascular diseases in Asian communities. The aim of this study was to study the effects of GTS on cardiac injury after global ischemia and reperfusion (I/R) in isolated guinea pig hearts. Methods: Animals were subjected to normothermic ischemia for 60 minutes, followed by 120 minutes of reperfusion. GTS significantly increased aortic flow, coronary flow, and cardiac output. Moreover, GTS significantly increased left ventricular systolic pressure and the maximal rate of contraction ($+dP/dt_{max}$) and relaxation ($-dP/dt_{max}$). In addition, GTS has been shown to ameliorate electrocardiographic changes such as the QRS complex, QT interval, and RR interval. Results: GTS significantly suppressed the biochemical parameters (i.e., lactate dehydrogenase, creatine kinase-MB fraction, and cardiac troponin I levels) and normalized the oxidative stress markers (i.e., malondialdehyde, glutathione, and nitrite). In addition, GTS also markedly inhibits the expression of interleukin-$1{\beta}$ (IL-$1{\beta}$), IL-6, and nuclear factor-${\kappa}B$, and improves the expression of IL-10 in cardiac tissue. Conclusion: These data indicate that GTS mitigates myocardial damage by modulating the biochemical and oxidative stress related to cardiac I/R injury.

동맥경화도와 생리학적 변수들 간의 상관관계 (Correlation between Arterial Stiffness and Physiological Parameters)

  • 신재욱;석성자;이길현;최석철;현경예
    • 보건의료산업학회지
    • /
    • 제7권3호
    • /
    • pp.71-82
    • /
    • 2013
  • Arterial stiffness(AS) is an important pathologic state of vascular injury. This study was carried out to elucidate the effect of physiological variables on brachial-ankle pulse wave velocity(BAPWV), index of AS. Four hundred adults(volunteers) participated in this study. Body indices, biochemical, cardiac and inflammatory markers, and right(Rt)- and left(Lt)-BAPWV were measured. Body mass index(BMI), Rt- and Lt-BAPWV, glucose, triglyceride, alkaline phosphatase(ALP), gamma-glutamyl transferase(GGT), creatinine, uric acid, troponin-I(TNI), NT-proBNP and high sensitivity C-reactive protein(hs-CRP) levels were higher than the reference value of each variable. Rt- and Lt-BAPWV were directly correlated with age, body weight, BMI, glucose, ketone, aspartate aminotransferase, alanine aminotransferase, ALP, GGT, total cholesterol, low density lipoprotein, lipoprotein(a), apolipoprotein-B, blood urea nitrogen, heart rate, TNI, creatine kinase, CK-MB, lactic dehydrogenase, myoglobin, hs-CRP, lipase, reumatoid factor, fibrinogen and D-dimer (P<0.05, P<0.01, P<0.001 or P<0.000, respectively), but inversely associated with total bilirubin, uric acid, apolipoprotein-A1 and GFR (P<0.05). These observations suggest that a variety of physiological variables may influence BAPWV, resulting in increased risk or prevention of cardiovascular and/or cerebrovascular attacks. Therefore, physiological variables affecting BAPWV should be regularly controlled.

Korean Red Ginseng Induced Cardioprotection against Myocardial Ischemia in Guinea Pig

  • Lim, Kyu Hee;Kang, Chang-Won;Choi, Jin-Yong;Kim, Jong-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권4호
    • /
    • pp.283-289
    • /
    • 2013
  • This study was designed to evaluate the protective effect of Korean red ginseng (KRG) against ischemia/reperfusion (I/R) injury in isolated guinea pig heart. KRG has been shown to possess various ginsenosides, which are the major components of Panax ginseng. These components are known naturally occurring compounds with beneficial effects and free radical scavenging activity. The heart was induced to ischemia for 60 min, followed by 120 min reperfusion. The hearts were randomly allocated into five groups (n=8 for each group): normal control (N/C), KRG control, I/R control, 250 mg/kg KRG group and 500 mg/kg KRG group. KRG significantly increased hemodynamics parameters such as aortic flow, coronary flow and cardiac output. Moreover, KRG significantly increased left ventricular systolic pressure (LVSP), the maximal rate of contraction (+dP/$dt_{max}$) and maximal rate of relaxation (-dP/$dt_{max}$). Also, treatment of KRG ameliorated electrocardiographic index such as the QRS, QT and RR intervals. Moreover, KRG significantly suppressed the lactate dehydrogenase, creatine kinase-MB fraction and cardiac troponin I and ameliorated the oxidative stress markers such as malondialdehyde and glutathione. KRG was standardized through ultra performance liquid chromatograph analysis for its major ginsenosides. Taken together, KRG has been shown to prevent cardiac injury by normalizing the biochemical and oxidative stress.

The effect of sildenafil on right ventricular remodeling in a rat model of monocrotaline-induced right ventricular failure

  • Bae, Hyun Kyung;Lee, Hyeryon;Kim, Kwan Chang;Hong, Young Mi
    • Clinical and Experimental Pediatrics
    • /
    • 제59권6호
    • /
    • pp.262-270
    • /
    • 2016
  • Purpose: Pulmonary arterial hypertension (PAH) leads to right ventricular failure (RVF) as well as an increase in pulmonary vascular resistance. Our purpose was to study the effect of sildenafil on right ventricular remodeling in a rat model of monocrotaline (MCT)-induced RVF. Methods: The rats were distributed randomly into 3 groups. The control (C) group, the monocrotaline (M) group (MCT 60 mg/kg) and the sildenafil (S) group (MCT 60 mg/kg+ sildenafil 30 mg/kg/day for 28 days). Masson Trichrome staining was used for heart tissues. Western blot analysis and immunohistochemical staining were performed. Results: The mean right ventricular pressure (RVP) was significantly lower in the S group at weeks 1, 2, and 4. The number of intra-acinar arteries and the medial wall thickness of the pulmonary arterioles significantly lessened in the S group at week 4. The collagen content also decreased in heart tissues in the S group at week 4. Protein expression levels of B-cell lymphoma-2 (Bcl-2)-associated X, caspase-3, Bcl-2, interleukin (IL)-6, matrix metalloproteinase (MMP)-2, endothelial nitric oxide synthase (eNOS), endothelin (ET)-1 and ET receptor A (ERA) in lung tissues greatly decreased in the S group at week 4 according to immunohistochemical staining. According to Western blotting, protein expression levels of troponin I, brain natriuretic peptide, caspase-3, Bcl-2, tumor necrosis factor-${\alpha}$, IL-6, MMP-2, eNOS, ET-1, and ERA in heart tissues greatly diminished in the S group at week 4. Conclusion: Sildenafil alleviated right ventricular hypertrophy and mean RVP. These data suggest that sildenafil improves right ventricular function.

Preoperative Levels of Hematological and Biochemical Indices Affect Perioperative Variables in Adult Patients with Coronary Artery Bypass Graft Surgery

  • Choi, Seok-Cheol;Cho, Byung-Kyu;Lee, Yong-Hwan;Chang, Kyung-Soo
    • 대한의생명과학회지
    • /
    • 제16권4호
    • /
    • pp.247-258
    • /
    • 2010
  • The objective of this research was to evaluate the relationships of preoperative (Pre-OP) levels of hematological and biochemical indices to perioperative variables in patients that underwent coronary artery bypass graft surgery (CABG). Pre-OP levels of hematological factors [total white blood cells (T-WBC), erythrocytes, hemoglobin, hematocrit, glycohemoglobin A1c (HbA1c), or platelet] were negatively or positively related with biochemical indices [alanine aminotransferase (ALT), bilirubin, glucose, fructosamine, triglyceride, and high density lipoprotein cholesterol (HDL)]. Pre-OP levels of hematological factors and biochemical indices were negatively or positively correlated with echocardiographic variables. Pre-OP level of HbA1c had a relationship with C-reactive protein. Pre-OP levels of aspartate aminotransferase (AST), ALT, HDL, glucose, fructosamine, or blood urea nitrogen (BUN) were positively or negatively associated with Pre-OP levels of cardiac markers (brain natriuretic peptide, troponin-I, creatine kinase isoenzyme 2, or CRP). Pre-OP levels of hematological factors (excepting T-WBC) related with operation time (OPT), postoperative mechanical ventilation time (POMVT), intensive care unit-period (ICU-period) or hospitalization. Pre-OP levels of AST, ALT, bilirubin, triglyceride, HDL, low dwensity lipoprotein, fructosamine, or BUN were positively or negatively correlated with OPT, graft numbers, POMVT, ICU-period or hospitalization. Retrospective this study reveals that Pre-OP levels of hematological and biochemical markers are associated with echocardiographic variables, several cardiac markers and postoperative outcomes, suggesting that Pre-OP levels of hematological and biochemical markers may be useful predictors for the diagnosis and prognosis of coronary artery disease.