• Title/Summary/Keyword: Tropical night

Search Result 59, Processing Time 0.026 seconds

Evaluating Tropical Night by Comparing Trends of Land cover and Land Surface Temperature in Seoul, Korea

  • Sarker, Tanni;Huh, Jung Rim;Bhang, Kon Joon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.2
    • /
    • pp.123-130
    • /
    • 2020
  • The impact of urbanization on LST (Land Surface Temperature) and TN (Tropical Night) was observed with the analyses of land cover change and LST by associating with the frequency of TN during the period of 1996 to 2016. The analyses of land cover and LST was based on the images of Landast 5 and 8 for September in 1996, 2006, and 2016 at a 10 year interval. The hourly-collected atmospheric temperatures for the months of July and August during the period were collected from AWSs (Automatic Weather Stations) in Seoul for the frequency analysis of TN. The study area was categorized into five land cover classes: urban or built-up area, forest, mixed vegetation, bare soil and water. It was found that vegetation (-7.71%) and bare soil (-9.04%) decreased during the period while built-up (17.29%) area was expanded throughout the whole period (1996-2016), indicating gradual urbanization. The changes came along with the LST rise in the urban area of built-up and bare soil in Seoul. In addition, the frequency of TN has increased in 4.108% and 7.03% for July and August respectively between the two periods of the 10 year interval, 1996-2006 and 2006-2016. By comparing the increasing trends of land cover, LST, and TN, we found a high probability that the frequency of TN had a relationship with land cover changes by the urbanization process in the study area.

Spatial-Temporal Patterns and Recent Changes of Tropical Night Phenomenon in South Korea (우리나라 열대야 현상 발생의 시.공간적 특징과 최근의 변화)

  • Choi, Cwangyong;Kwon, Won-Tae
    • Journal of the Korean Geographical Society
    • /
    • v.40 no.6 s.111
    • /
    • pp.730-747
    • /
    • 2005
  • This study examines relationships between climatic factors and spatial-temporal patterns and recent changes of tropical night phenomenon(TN) occurring through nighttime stages in South Korea. Frequencies of daily TN at different times of night are extracted from long term(1973-2004) 6 hourly nighttime(9PM and 3AM) temperature and daily minimum temperature data at 61 weather stations. Temporally, the occurrences of TN are more pronounced in the evening(9PM) and during the Changma Break period(late July - early August). Spatially, the TNs in the evening frequently occur in the urbanized inland cities at low latitudes due to urban heat islands, whereas the TNs in the middle of night(3AM) or at dawn frequently appeared along the coastal areas within 30km from ocean due to the thermal inertia of ocean. By contrast, the evening(dawn) TN is not seen in the highlands whose elevation is greater than 800m(300m) along the Taebaek and Sobaek mountain ridges due to temperature lapse rates with height Correlation and multivariate regression analyses reveal that the impacts of human or physical climatic factors, such as latitude, elevation, proximity to ocean, and population density, are diverse on the frequencies of TN according to nighttime stages. Recent temporal changes of the late Changma period and intensified urbanization during the 1990s have increased the occurances of TN in urban areas. Therefore, strategies to mitigate the increasing urban TN should be prepared in the near future.

Analysis of Nocturnal Cold Air Flow Characteristics for Setting of Tropical Night Response Zone in Daegu (대구시 열대야 대응 구역 설정을 위한 야간 찬공기 유동성 분석)

  • SEO, Bo-Yong;LEE, Sang-Beom;GWON, Soon-Beom;CHA, Jae-Gyu;JUNG, Eung-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.3
    • /
    • pp.220-235
    • /
    • 2020
  • Heat wave generation in cities is basically affected by global warming, but it is further exacerbated by the impact of artificial heat emission and heat accumulation in the city. In particular, the effects of urban heat waves directly affect the occurrence of tropical nights. Basically, however, the choice of countermeasures against tropical nights is very limited compared to the daytime heat wave response. The purpose of this study was to analyze the characteristics of cold air flow at night as a countermeasure against tropical nights in Daegu Metropolitan City and to suggest its spatial applicability. As a research method, the spatial characteristics (flow velocity, flow rate, flow direction and range) of cold air flow in Daegu were quantitatively analyzed using KLAM_21, a cold air flow analysis program. As a result of the analysis, it was found that cold air generation and flow in the surrounding mountains of Daegu Metropolitan City was very active, but the inflow was limited to the urban area, which has tropical nights. However, it has been shown that the flow of cold air flowing from the surrounding mountains is very active in some urban areas, so it has spatial conditions that are very effective in countering tropical nights. If these spatial conditions are used for the urban planning, it will be very useful to develop countermeasures for tropical nights.

Study on the Long-term Change of Urban Climate in Daegu (대구의 장기적 도시기후 변동에 관한 연구)

  • 김해동
    • Journal of Environmental Science International
    • /
    • v.12 no.7
    • /
    • pp.697-704
    • /
    • 2003
  • Through data analysis using the meteorological data during 40 years(1961∼2000) for 2 stations(Daegu and Chupungnyong), we studied the present condition and long-term trends in urban climatic environments of Daegu. It was found that there was about 1.5$^{\circ}C$ rise in annual mean temperature of Daegu from 1961 to 2000. On the other hand, that of Chupungnyung was not more than 0.4$^{\circ}C$ for the same period. The regional disparity in temperature changes has been caused by the difference of urban effects on climate between two regions. In particular, the urban warming appears more significant in winter season. There was about 3$^{\circ}C$ rise in annual mean daily minimum temperature of winter season(Dec.∼Feb.) in Daegu. As the result, the number of winter days continuously decreased from 115 days(1961) to 75 days(2000). The long-term trends of relative humidity were also studied to exame the effects of urbanization on climate in Daegu. It was found that there was about 7% decrease in relative humidity of Daegu during past 40 years(1961∼2000). On the other side, the decrease of Chupungnyung was not more than 2% for the same period. The long-term trends of the other climatic factors(fog days, tropical night days, etc) were also studied in this study.

A Study on Indoor Thermal Environment in an Tower Type Apartment House at Tropical Nights (여름철 열대야 발생시 탑상형 아파트의 실내온열환경에 대한 연구)

  • Chang, Hyun-Jae;Kim, Hyung-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.1
    • /
    • pp.20-25
    • /
    • 2010
  • In this study, As a basic research for improving indoor thermal environment at tower type apartment houses, specifications of heat storage and heat emission in the structures of apartment houses were investigated, and the ratio of indoor and outdoor air velocity at tower type apartment house was examined, too. Indoor temperature at night time was higher than outdoor air temperature because heat emission from the structure of wall, ceiling and floor those are constructed by use of reinforced concrete which has large heat capacity. The ratio of indoor and outdoor air velocity was lower than 0.1 and this was caused by the plan of tower type apartment house. PMV was in the range of 0.3~1.9, and was about 1.0 (it means slightly warm) at 10 : 00 p.m.. To improve indoor thermal environment in summer season at tower type apartment houses, it needs more investigation on specifications of heat storage and heat emission in the structure including winter season, and on the improvement of the ratio of indoor and outdoor air velocity.

Flowering, Fruit Characteristic and Shoot Growth of the Mango, cv. 'Irwin' in Response to D ifferent Night Temperature (야간온도 변화에 따른 망고 'Irwin'의 개화, 과실특성 및 수체생육)

  • Lim, Chan Kyu;An, Hyun Joo;Jeon, Mikyoung;Kim, Seolah;Chung, Sun Woo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.349-355
    • /
    • 2021
  • The effect of night temperature was investigated on mango (Mangifera indica cv. Irwin) for setting appropriate night temperature and managing mango cultivation in a greenhouse. Different night temperatures (10, 15, and 20℃) were treated from budding to fruit development in mango trees. As night temperature increased, the initiation of flowering, full blooming, fruiting, and fruit development tended to be accelerated. There were no significant differences in the growth of shoots flushed after the fruit harvest among trees treated with different night temperatures. The lengths of the flower stalk were the shortest at 10℃ of night temperature; however, there were no significant differences between 15℃ and 20℃ of the night temperature. The length, diameter, and weight of mango fruits were higher at 15℃ and 20℃ than 10℃. Soluble solid contents and acidities showed no difference; the firmness and skin color were better as the night temperature increased. Accordingly, setting the minimum night temperatures to 15℃ or 20℃ can increase the number of fruits and produce high-quality fruits when cultivating mango in the greenhouse. Even the minimum night temperature to 15℃ can reduce heating costs in the greenhouse.

Extracorporeal Worm Extraction of Diphyllobothrium nihonkaiense with Amidotrizoic Acid in a Child

  • Shin, Hye Kyung;Roh, Joo-Hyung;Oh, Jae-Won;Ryu, Jae-Sook;Goo, Youn-Kyoung;Chung, Dong-Il;Kim, Yong Joo
    • Parasites, Hosts and Diseases
    • /
    • v.52 no.6
    • /
    • pp.677-680
    • /
    • 2014
  • Infection cases of diphyllobothriid tapeworms are not much in the below teen-age group. We report a case of Diphyllobothrium nihonkaiense infection in a 13-year-old boy. He presented with severe fatigue, occasional abdominal pain at night time. He also had several episodes of tapeworm segment discharge in his stools. By his past history, he had frequently eaten raw fish including salmon and trout with his families. Numerous eggs of diphyllobothriid tapeworm were detected in the fecal examination. We introduced amidotrizoic acid as a cathartic agent through nasogastroduodenal tube and let nearly whole length (4.75 m) of D. nihonkaiense be excreted through his anus. After a single dose of praziquantel, the child's stool showed no further eggs, and his symptoms disappeared. The evacuated worm was identified as D. nihonkaiense by mitochondrial cox1 gene analysis. Here we report a successful extracorporeal worm extraction from an infection case of D. nihonkaiense by the injection of amidotrizoic acid.

Three-dimensional Numerical Prediction on the Evolution of Nocturnal Thermal High (Tropical Night) in a Basin

  • Choi, Hyo;Kim, Jeong-Woo
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.25 no.1
    • /
    • pp.57-81
    • /
    • 1997
  • Numerical prediction of nocturnal thermal high in summer of the 1995 near Taegu city located in a basin has been carried out by a non-hydrostatic numerical model over complex terrain through one-way double nesting technique in the Z following coordinate system. Under the prevailing westerly winds, vertical turbulent fluxes of momentum and heat over mountains for daytime hours are quite strong with a large magnitude of more than $120W/\textrm{m}^2$, but a small one of $5W/\textrm{m}^2$ at the surface of the basin. Convective boundary layer (CBL) is developed with a thickness of about 600m over the ground in the lee side of Mt. Hyungje, and extends to the edge of inland at the interface of land sea in the east. Sensible heat flux near the surface of the top of the mountain is $50W/\textrm{m}^2$, but its flux in the basin is almost zero. Convergence of sensible heat flux occurs from the ground surface toward the atmosphere in the lower layer, causing the layer over the mountain to be warmed up, but no convergance of the flux over the basin results from the significant mixing of air within the CBL. As horizontal transport of sensible heat flux from the top of the mountain toward over the basin results in the continuous accumulation of heat with time, enhancing air temperature at the surface of the basin, especially Taegu city to be higher than $39.3^{\circ}C$. Since latent heat fluxes are $270W/\textrm{m}^2$ near the top of the mountain and $300W/\textrm{m}^2$ along the slope of the mountain and the basin, evaporation of water vapor from the surface of the basin is much higher than one from the mountain and then, horizontal transport of latent heat flux is from the basin toward the mountain, showing relative humidity of 65 to 75% over the mountain to be much greater than 50% to 55% in the basin. At night, sensible heat fluxes have negative values of $-120W/\textrm{m}^2$ along the slope near the top of the mountain and $-50W/\textrm{m}^2$ at the surface of the basin, which indicate gain of heat from the lower atmosphere. Nighttime radiative cooling produces a shallow nocturnal surface inversion layer with a thickness of about 100m, which is much lower than common surface inversion layer, and lifts extremely heated air masses for daytime hours, namely, a warm pool of $34^{\circ}C$ to be isolated over the ground surface in the basin. As heat transfer from the warm pool in the lower atmosphere toward the ground of the basin occurs, the air near the surface of the basin does not much cool down, resulting in the persistence of high temperature at night, called nocturnal thermal high or tropical night. High relative humidity of 75% is found at the surface of the basin under the moderate wind, while slightly low relative humidity of 60% is along the eastern slope of the high mountain, due to adiabatic heating by the srong downslope wind. Air temperature near the surface of the basin with high moisture in the evening does not get lower than that during the day and the high temperature produces nocturnal warming situation.

  • PDF

Observational Study of Thermal Characteristics by Distribution Ratio of Green Area at Urban in Summer Season (하절기 관측을 통한 도시의 지역별 공간녹지분포율에 따른 열환경 특성 연구)

  • Jung, Im-Soo;Choi, Dong-Ho;Lee, Bu-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.3
    • /
    • pp.8-16
    • /
    • 2011
  • The objective of this study is to analyze the characteristic of thermal environment in the summer season by conducting the field observation of temperature, relative humidity, and globe temperature in some parts of the city. Observation point was divided to a densely populated area, a residential area, a green area, a waterfront green area and a suburban district by the distribution ratio of green area. In this study, the correlation between maximum temperature and globe temperature, study on index for intensity of the tropical night and the temperature distribution characteristic of measurement points by the distribution ratio of green area were analyzed. The results of this study are as follows. (1) The difference between temperature and globe temperature by the distribution ratio of green area is confirmed. The difference of nighttime is more clearly that of daytime. (2) The average temperature and globe temperature of the densely populated area($29.2^{\circ}C$, $33.7^{\circ}C$) are higher than that of the waterfront green area($27.9^{\circ}C$, $32.0^{\circ}C$) by $1.3^{\circ}C$ and $1.7^{\circ}C$, respectively. (3) The number of tropical nights has different days of tropical nights by the distribution ratio of green area of 17days for the Daegu weather station, 14days for adensely populated area, 14days for a residential area, 6days for a green area, 2days for a waterfront green area, and 2days for a suburban district. (4) The results of the slope of trend line for the effects of the temperature on globe temperature change and the intercept for the size of the impact of radiant energy gained around by the analysis of the correlation between the maximum temperature and globe temperature can be utilized objective evaluation index of the each point's artificial effects.