• Title/Summary/Keyword: Tropical climate

Search Result 274, Processing Time 0.025 seconds

ON WELL-POSEDNESS AND BLOW-UP CRITERION FOR THE 2D TROPICAL CLIMATE MODEL

  • Zhou, Mulan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.4
    • /
    • pp.891-907
    • /
    • 2020
  • In this paper, we consider the Cauchy problem to the tropical climate model. We establish the global regularity for the 2D tropical climate model with generalized nonlocal dissipation of the barotropic mode and obtain a multi-logarithmical vorticity blow-up criterion for the 2D tropical climate model without any dissipation of the barotropic mode.

Towards Sustainability of Tropical Forests: Implications for Enhanced Carbon Stock and Climate Change Mitigation

  • Rahman, Mizanur;Islam, Mahmuda;Islam, Rofiqul;Sobuj, Norul Alam
    • Journal of Forest and Environmental Science
    • /
    • v.33 no.4
    • /
    • pp.281-294
    • /
    • 2017
  • Tropical forests constitute almost half of the global forest cover, account for 35% of the global net primary productivity and thereby have potential to contribute substantially to sequester atmospheric $CO_2$ and offset climate change impact. However, deforestation and degradation lead by unsustainable management of tropical forests contribute to the unprecedented species losses and limit ecosystem services including carbon sequestration. Sustainable forest management (SFM) in the tropics may tackle and rectify such deleterious impacts of anthropogenic disturbances and climatic changes. However, the existing dilemma on the definition of SFM and lack of understanding of how tropical forest sustainability can be achieved lead to increasing debate on whether climate change mitigation initiatives would be successful. We reviewed the available literature with a view to clarify the concept of sustainability and provide with a framework towards the sustainability of tropical forests for enhanced carbon stock and climate change mitigation. We argue that along with securing forest tenure and thereby reducing deforestation, application of reduced impact logging (RIL) and appropriate silvicultural system can enhance tropical forest carbon stock and help mitigate climate change.

TIPEX (Tropical Indo-Pacific water transport and ecosystem monitoring EXperiment) Program (태평양-인도양 해양순환 연구 프로그램)

  • Jeon, Dongchull;Kim, Eung;Shin, Chang Woong;Kim, Cheol-Ho;Kug, Jong Seong;Lee, Jae Hak;Lee, Youn-Ho;Kim, Suk Hyun
    • Ocean and Polar Research
    • /
    • v.35 no.3
    • /
    • pp.259-272
    • /
    • 2013
  • One of the factors influencing the climate around Korea is the oceanic-atmospheric variability in the tropical region between the eastern Indian and the western Pacific Oceans. Lack of knowledge about the air-sea interaction in the tropical Indo-Pacific region continues to make it problematic forecasting the ocean climate in the East Asia. The 'Tropical Indo-Pacific water transport and ecosystem monitoring EXperiment (TIPEX)' is a program for monitoring the ocean circulation variability between Pacific and Indian Oceans and for improving the accuracy of future climate forecasting. The main goal of the TIPEX program is to quantify the climate and ocean circulation change between the Indian and the Pacific Oceans. The contents of the program are 1) to observe the mixing process of different water masses and water transport in the eastern Indian and the western Pacific, 2) to understand the large-scale oceanic-climatic variation including El Nino-Southern Oscillation (ENSO)/Warm Pool/Pacific Decadal Oscillation (PDO)/Indian Ocean Dipole (IOD), and 3) to monitor the biogeochemical processes, material flux, and biological changes due to the climate change. In order to effectively carry out the monitoring program, close international cooperation and the proper co-work sharing of tasks between China, Japan, Indonesia, and India as well as USA is required.

Future flood frequency analysis from the heterogeneous impacts of Tropical Cyclone and non-Tropical Cyclone rainfalls in the Nam River Basin, South Korea

  • Alcantara, Angelika;Ahn, Kuk-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.139-139
    • /
    • 2021
  • Flooding events often result from extreme precipitations driven by various climate mechanisms, which are often disregarded in flood risk assessments. To bridge this gap, we propose a climate-mechanism-based flood frequency analysis that accommodates the direct linkage between the dominant climate processes and risk management decisions. Several statistical methods have been utilized in this approach including the Markov Chain analysis, K-nearest neighbor (KNN) resampling approach, and Z-score-based jittering method. After that, the impacts of climate change are associated with the modification of the transition matrix (TM) and the application of the quantile mapping approach. For this study, we have selected the Nam River Basin, South Korea, to consider the heterogeneous impacts of the two climate mechanisms, including the Tropical Cyclone (TC) and non-TCs. Based on our results, while both climate mechanisms have significant impacts on future flood extremes, TCs have been observed to bring more significant and immediate impacts on the flood extremes. The results in this study have proven that the proposed approach can lead to a new insights into future flooding management.

  • PDF

Relationship between Interannual Variability of Phytoplankton and Tropical Cyclones in the Western North Pacific

  • Park, Jong-Yeon;Kug, Jong-Seong;Park, Ji-Soo;Chang, Chan-Joo
    • Ocean and Polar Research
    • /
    • v.34 no.1
    • /
    • pp.29-35
    • /
    • 2012
  • We investigated the interannual relationship between chlorophyll concentrations in the western North Pacific and tropical cyclones (TCs) in the western North Pacific by analyzing data collected for >12 years. Despite the short-term scale (2~3 weeks) in the contribution of tropical cyclones to phytoplankton, the current study revealed that the long-term chlorophyll variability in the western North Pacific is profoundly related to long-term variability in the frequency of TCs. It was also found that the Pacific decadal oscillation (PDO) tends to control such relationships between the 2 bio-physical systems. This result suggests a significant climatic relationship between TC activity and marine phytoplankton, and also suggests the possibility of more accurate estimations of primary production in the western North Pacific.

Rain Attenuation Prediction at Different Time Percentages for Ku, K, and Ka Bands Satellite Communication Systems over Nigeria

  • Orji Prince Orji;Obiegbuna Dominic Chukwuebuka;Okoro Eucharia Chidinma;Ugonabo Obiageli Josephine;Okezuonu Patrick Chinedu;Iyida Evaristus Uzochukwu;Ugwu Chukwuebuka Jude;Menteso Firew Meka;Ikechukwu Ugochukwu Chiemeka
    • Journal of Astronomy and Space Sciences
    • /
    • v.41 no.1
    • /
    • pp.25-33
    • /
    • 2024
  • This paper evaluates the influence of rainfall on propagated signal at different time exceedance percentages of an average year, over the climate zones of the country. Specifically, it demonstrates critical and non critical signal fade or signal outage time exceedance (0.001% to 1%) for Ku, K, and Ka-band systems in an average year. The study was carried out using meteorological data made available by the Nigerian Meteorological Agency (NiMet) over a period of 10 years (2009-2018). The four climate zones in the country were represented by five (5) locations; Maidugiri (warm desert climate), Sokoto (tropical dry climate), Port Harcourt (tropical monsoon climate), Abuja and Enugu (tropical savanna climate). The parameters were simulated into the International Telecommunications Union Recommended (ITU-R) models for rain attenuation over the tropics and results presented using MatLab and Origin Lab. Results of Ku band propagations showed that only locations in the tropical savanna and tropical monsoon climates experienced total signal outage for time percentage exceedance equal to or below 0.01% for both horizontal and vertical polarizations. At K band propagations, the five locations showed to have experienced signal outage at time exceedance equal to and below 0.01%, almost same was recorded for the Ka-band propagation. It was also observed that horizontal and vertical polarization of signal had slightly different rain attenuation values for the studied bands at the five locations, with horizontal polarization having higher values than vertical polarization.

An Estimation of the of Tropical Cyclone Size Using COMS Infrared Imagery (천리안 위성 적외영상 자료를 이용한 태풍강풍반경의 산출)

  • Lee, Yoon-Kyoung;Kwon, MinHo
    • Atmosphere
    • /
    • v.25 no.3
    • /
    • pp.569-573
    • /
    • 2015
  • An algorithm to symmetric radius of $15ms^{-1}$ isotaches of tropical cyclones is suggested using infrared (IR) imagery of geostationary satellite. It is assumed that symmetric tangential winds outside the maximum winds exponentially decrease with the radial distances of the tropical cyclone, which has a clear eye-wall structure. Four parameters for estimation of the tropical cyclone size are center location, maximum sustained wind, radius of the maximum wind, and relaxation coefficient for the decreasing rate with distances of the tropical cyclone. The estimation results are limitedly verified as comparing to surface winds of polar orbiting satellite such as ASCAT data.

Comparative Study on Performance of Grid-Connected Photovoltaic Modules in Tropical Monsoon Climate under Thailand condition (태국 열대몬순기후 조건에서 PV모듈 기술별 성능특성 비교 연구)

  • Kim, Seung Duck;Koh, Byung Euk;Park, Jin Hee;Cheon, Dae In
    • New & Renewable Energy
    • /
    • v.10 no.3
    • /
    • pp.39-46
    • /
    • 2014
  • The performances of three different types of photovoltaic (PV) module technologies namely, copper-indium-diselenide (CIGS), mono-crystalline silicon (mo-Si) and amorphous silicon (a-Si) have been comparatively studied in the grid-connected system for more than a year under the tropical monsoon climate of Thailand. The yields, performance ratios and system efficiencies for the respective PV module technologies have been calculated and a comparison is presented here. The performance ratios of the initial operation year for CIGS showed highest among the compared technologies under Thailand climate conditions by marking 97.0% while 89.6% for a-Si and 81.5% for mo-Si. Although mo-Si has shown highest efficiencies all over the period, under the testing conditions, the operating efficiency of mo-Si was down-graded from its reference value mainly due to high operating temperature and the efficiency of the tested CIGS module was also found as high as that of mo-Si in the study. Accordingly, outdoor assessment shows that CIGS modules have demonstrated high performance in terms of yields and performance ratios in Thailand climate conditions.

THE H1-UNIFORM ATTRACTOR FOR THE 2D NON-AUTONOMOUS TROPICAL CLIMATE MODEL ON SOME UNBOUNDED DOMAINS

  • Pigong, Han;Keke, Lei;Chenggang, Liu;Xuewen, Wang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.6
    • /
    • pp.1439-1470
    • /
    • 2022
  • In this paper, we study the uniform attractor of the 2D nonautonomous tropical climate model in an arbitrary unbounded domain on which the Poincaré inequality holds. We prove that the uniform attractor is compact not only in the L2-spaces but also in the H1-spaces. Our proof is based on the concept of asymptotical compactness. Finally, for the quasiperiodical external force case, the dimension estimates of such a uniform attractor are also obtained.

The Seasonal Forecast Characteristics of Tropical Cyclones from the KMA's Global Seasonal Forecasting System (GloSea6-GC3.2) (기상청 기후예측시스템(GloSea6-GC3.2)의 열대저기압 계절 예측 특성)

  • Sang-Min Lee;Yu-Kyung Hyun;Beomcheol Shin;Heesook Ji;Johan Lee;Seung-On Hwang;Kyung-On Boo
    • Atmosphere
    • /
    • v.34 no.2
    • /
    • pp.97-106
    • /
    • 2024
  • The seasonal forecast skill of tropical cyclones (TCs) in the Northern Hemisphere from the Korea Meteorological Administration (KMA) Global Seasonal Forecast System version 6 (GloSea6) hindcast has been verified for the period 1993 to 2016. The operational climate prediction system at KMA was upgraded from GloSea5 to GloSea6 in 2022, therefore further validation was warranted for the seasonal predictability and variability of this new system for TC forecasts. In this study, we examine the frequency, track density, duration, and strength of TCs in the North Indian Ocean, the western North Pacific, the eastern North Pacific, and the North Atlantic against the best track data. This methodology follows a previous study covering the period 1996 to 2009 published in 2020. GloSea6 indicates a higher frequency of TC generation compared to observations in the western North Pacific and the eastern North Pacific, suggesting the possibility of more TC generation than GloSea5. Additionally, GloSea6 exhibits better interannual variability of TC frequency, which shows relatively good correlation with observations in the North Atlantic and the western North Pacific. Regarding TC intensity, GloSea6 still underestimates the minimum surface pressures and maximum wind speeds from TCs, as is common among most climate models due to lower horizontal resolutions. However, GloSea6 is likely capable of simulating slightly stronger TCs than GloSea5, partly attributed to more frequent 6-hourly outputs compared to the previous daily outputs.