• Title/Summary/Keyword: Tritium storage

Search Result 20, Processing Time 0.018 seconds

Hydrogen Isotopes Accountancy and Storage Technology (수소동위원소 계량·공급기술)

  • Koo, Dae-Seo;Chung, Hong-Suk;Chung, Dong-You;Lee, Jung-Min;Yun, Sei-Hun;Cho, Seung-Yon;Jung, Ki-Jung
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.1
    • /
    • pp.49-55
    • /
    • 2012
  • Hydrogen isotopes accountancy and storage are important functions in a nuclear fusion fuel cycle. The hydrogen isotopes are safely stored in metal hydride beds. The tritium inventory of the bed is determined from the decay heat of tritium. The decay heat is measured by circulating helium through the metal hydride bed and measuring the resultant temperature increase of the helium flow. We are reporting our preliminary experimental results on the hydrogen isotopes accountancy and storage performance in a metal hydride bed.

Hydrogen Brittleness on Welding Part for SDS Bottles (삼중수소 저장용기 이종 접합부의 수소 취성)

  • Kim, Raymund K.I.;Jung, Seok;Kang, Hyungoo;Chang, Minho;Yun, Seihun;Hong, Tae-Whan
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.2
    • /
    • pp.121-127
    • /
    • 2013
  • Tritium was attracted with high energy source in neutron fusion energy systems. A number of research was performed in tritium storage materials. The Korea was raised storage and delivery systems (SDS) of international thermonuclear experimental reactor (ITER) research. However, bottles of SDS would be important because of stability. The bottles have a welding zone, this zone will be vulnerable to hydrogen embrittlement. This zone have a high thermodynamic energy and heat deterioration. Therefore bottles were studied about hydrogen embrittlement to retain stability. The heat treatment of hydrogen was carried under pressure-composition-temperature (PCT) apparatus because of checking at real time. And then, mechanical properties were evaluated by tensile test and hardness test. In results of this study, hydrogen atmosphere condition is very important by tensile test and kinetics test. The samples were evaluated, that is more weak hydrogen pressure, increasing temperature and time. This results could be useful in SDS bottle designs.

Tritium Fuel Cycle of the International Thermonuclear Experimental Reactor (국제핵융합실험로 삼중수소 연료주기)

  • Song, Kyu-Min;Sohn, Soon Hwan;Chung, Hongsuk;Yun, Sei-Hun;Jung, Ki Jung
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.595-603
    • /
    • 2012
  • International Thermonuclear Experimental Reactor (ITER) will be constructed in 2019 according to the JIA (Joint Implementation Agreement) of 7 countries. The ITER fusion fuel cycle consists of fusion vacuum vessel, tritium plant and fuelling system. The tritium plant provides the functions of storage, delivery, separation, removal and recovery of the deuterium and tritium used as fusion fuels for the ITER. The tritium plant systems supply deuterium and tritium from external sources and treat all tritiated fluids from ITER operation through Storage and Delivery System (SDS), Tokamak Exhaust Processing (TEP), Isotope Separation System (ISS), Water Detritiation System & Atmosphere Detritiation System (WDS & ADS) and Analysis System (ANS). In this paper, the functions and design requirements of the major systems in the tritium plant and the status of R&D are described. Korean party is developing the SDS for ITER tritium plant and partially attaining the WDS technology through the construction and operation experience of the Wolsong Tritium Removal Facility (WTRF). Now it is expected that researchers in other fields such as chemical engineering take part in the development of upcoming technologies for ISS and TEP.

Tritium Fuel Cycle Technology of ITER Project (ITER 사업의 삼중수소 연료주기 기술)

  • Yun, Sei-Hun;Chang, Min-Ho;Kang, Hyun-Goo;Kim, Chang-Shuk;Cho, Seung-Yon;Jung, Ki-Jung;Chung, Hong-Suk;Song, Kyu-Min
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.1
    • /
    • pp.56-64
    • /
    • 2012
  • The ITER fuel cycle is designed for DT operation in equimolar ratio. It involves not only a group of fuelling system and torus cryo-pumping system of the exhaust gases through the divertor from the torus in tokamak plant, but also from the exhaust gas processing of the fusion effluent gas mixture connected to the hydrogen isotope separation in cryogenic distillation to the final safe storage & delivery of the hydrogen isotopes in tritium plant. Tritium plant system supplies deuterium and tritium from external sources and treats all tritiated fluids in ITER operation. Every operation and affairs is focused on the tritium inventory accountancy and the confinement. This paper describes the major fuel cycle processes and interfaces in the tritium plant in aspects of upcoming technologies for future hydrogen and/or hydrogen isotope utilization.

Evaluations of Hydrogen Embrittlement Behaviours on Dissimilar Welding Part of SDS Bottles (II) (삼중수소 저장용기 이종용접부의 수소취화 거동 평가 (II))

  • Cho, Kyoungwon;Choi, Jaeha;Jang, Minhyuk;Lee, Youngsang;Hong, Taewhan
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.2
    • /
    • pp.120-126
    • /
    • 2015
  • Recently, the ever-increasing use of fossil fuels for rapid industrial development and population significantly caused an environment pollution and global warming such as climate change. So research and development of sustainable and eco-friendly energy have been performed. Especially the interest in nuclear fusion fuel was significantly increased from the developed countries. The system of fusion energy production was tritium separation, storage and delivery, and purification. Republic of Korea is in charge of Storage and Delivery System (SDS) in the International Thermonuclear Experimental Reactor (ITER). Welding part of the SDS bottles for storing the tritium is known to be susceptible to hydrogen embrittlement. In this study, conducted a study for the relaxation of the stability and hydrogen embrittlement of the weld area. The hydrogen heat treatment was processed through the Pressure-Composition-Temperature (PCT) device according to the time variation. Also mechanical properties such as impact test and hardness test according to using the alkaline cleaning liquid for hydrogen embrittlement relief and the fracture was observed by scanning electron microscopy (SEM) after the mechanical properties evaluation.

Functional Li-M (Ti, Al, Co, Ni, Mn, Fe)-O Energy Materials

  • Kim, In Yea;Shin, Seo Yoon;Ko, Jea Hwan;Lee, Kang Soo;Woo, Sung Pil;Kim, Dong Kyu;Yoon, Young Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.1
    • /
    • pp.9-22
    • /
    • 2017
  • Many new functional materials have been studied for efficient production and storage of energy. Many new materials such as sodium-based and sulfide-based materials have been proposed for energy storage, but research on Li batteries is still dominant. Due to the influence of environmental concerns regarding nuclear energy, interest in and research on fusion power are steadily increasing. For the commercialization of nuclear fusion, a design standard based on a considerable level of physical analysis and modeling is proposed. Nevertheless, limitations of existing materials in nuclear fusion environments limit practical applications. Tritium propagation material for continuous fusion reaction is one of the core materials, and therefore research on this material is being carried out intermittently. The key material for Li-based energy storage and tritium generation is the functional material Li-M-O. In this review, a structural description of functional Li-M-O system materials and technical trends for its applications are introduced.