• 제목/요약/키워드: Triticum aestivum

검색결과 148건 처리시간 0.025초

Proteomics Approach on Puroindoline Gene of Pre-harvest Sprouting Wheat

  • Kamal, Abu Hena Mostafa;Park, Cheol-Soo;Heo, Hwa-Young;Chung, Keun-Yook;Cho, Yong-Gu;Kim, Hong-Sig;Song, Beom-Heon;Lee, Chul-Won;Woo, Sun-Hee
    • 한국육종학회지
    • /
    • 제41권3호
    • /
    • pp.205-212
    • /
    • 2009
  • Wheat (Triticum aestivum L.) grain texture is an important determinant of milling properties and end product use. Two linked genes, puroindoline a (PINA) and puroindoline b (PINB), control most of the genetic variation in wheat grain texture. Wheat seed proteins were examined to identify PINA and PINB gene using two pre-harvest sprouting wheat cultivars; Jinpum (resistant) and Keumgang (susceptible).Wheat seed proteins were separated by two-dimensional electrophoresis with IEF gels over pH ranges: pH 3-10. A total of 73 spots were digested with trypsin resulting peptide fragmentation were analyzed by matrix assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF/MS). Mass spectra were automatically processed and searched through NCBInr, SWISS-PORT and MSDB database with mono isotopic masses and complete gene sequence were found by UniProt database. Puroindoline a and puroindoline b that is responsible for grain texture related with baking performance and roughness. Two spots were found Pin b (16.7 kDa) and Pin a (16.3 kDa) in Jinpum compare to seven spots were identified Pin a (16.1 kDa, 16.3 kDa) and Pin b (16.7 kDa, 9.5 kDa and 14.4 kDa) in Keumgang. Some selected spots were identified puroindoline like grain softness protein (16.9 kDa, 17 kDa and 18.1 kDa) in Keumgang. Moreover, to gain a better inferring the identification of puroindoline related proteins using proteomics, we accomplished a complete gene sequence of PINA and PINB gene in pre-harvesting sprouting wheat seeds between resistant (Jinpum) and susceptible (Keumgang).

Low pH stress responsive transcriptome of seedling roots in wheat (Triticum aestivum L.)

  • Hu, Haiyan;He, Jie;Zhao, Junjie;Ou, Xingqi;Li, Hongmin;Ru, Zhengang
    • Genes and Genomics
    • /
    • 제40권11호
    • /
    • pp.1199-1211
    • /
    • 2018
  • Soil acidification is one of major problems limiting crop growth and especially becoming increasingly serious in China owing to excessive use of nitrogen fertilizer. Only the STOP1 of Arabidopsis was identified clearly sensitive to proton rhizotoxicity and the molecular mechanism for proton toxicity tolerance of plants is still poorly understood. The main objective of this study was to investigate the transcriptomic change in plants under the low pH stress. The low pH as a single factor was employed to induce the response of the wheat seedling roots. Wheat cDNA microarray was used to identify differentially expressed genes (DEGs). A total of 1057 DEGs were identified, of which 761 genes were up-regulated and 296 were down-regulated. The greater percentage of up-regulated genes involved in developmental processes, immune system processes, multi-organism processes, positive regulation of biological processes and metabolic processes of the biological processes. The more proportion of down-regulation genes belong to the molecular function category including transporter activity, antioxidant activity and molecular transducer activity and to the extracellular region of the cellular components category. Moreover, most genes among 41 genes involved in ion binding, 17 WAKY transcription factor genes and 17 genes related to transport activity were up-regulated. KEGG analysis showed that the jasmonate signal transduction and flavonoid biosynthesis might play important roles in response to the low pH stress in wheat seedling roots. Based on the data, it is can be deduced that WRKY transcription factors might play a critical role in the transcriptional regulation, and the alkalifying of the rhizosphere might be the earliest response process to low pH stress in wheat seedling roots. These results provide a basis to reveal the molecular mechanism of proton toxicity tolerance in plants.

염화나트륨 처리 및 재배방법이 새싹밀의 항산화 성분 및 활성에 미치는 영향 (The Effects of Sodium Chloride and the Cultivation Method on Antioxidant Compounds and Activities in Wheat (Triticum aestivum) Sprouts)

  • 양지영;이한결;서우덕;이미자;송승엽;최준열;김현영
    • 한국식품영양학회지
    • /
    • 제35권3호
    • /
    • pp.213-222
    • /
    • 2022
  • Sprouts have various health benefits. Specifically, wheat sprouts are rich in bioactive compounds, such as vitamins and polyphenols. Elicitation induces and enhances secondary metabolite biosynthesis in plants. Therefore, in this study, we investigated the effects of sodium chloride (NaCl) treatments on the growth profile, free amino acid content, and antioxidant activity of germinated wheat (Triticum aestivum). Wheat seeds were germinated at 20℃ for 10 days and treated with 0, 2, 4, 7.5, and 10 mM of NaCl 10 days before harvesting. Treating the soil bed with NaCl increased the nutritional component amounts, such as free amino acids and γ-aminobutyric acid. The chlorophyll a and b concentrations were the highest in the hydroponic system treated with 7.5 mM NaCl. In addition, the polyphenol and flavonoid contents of sprouts treated with 2 and 7.5 mM NaCl were 1.94 and 1.34 times higher than that of the control sprouts (0 mM NaCl, water only), respectively. These results suggest that 2 to 4 mM NaCl treatments improve the nutritional and food quality of wheat sprouts more than water only.

Studies on Cytological Characteristics of Elymus humidus as Genetic Resources Compared to Common Wheat (Triticum aestivum L.)

  • Ji-Yoon Han;Seong-Wook Kang;Sejin Oh;Yumi Lee;Myoung-Jae Shin;Sukyeung Lee;Seong-Woo Cho
    • 한국작물학회지
    • /
    • 제68권3호
    • /
    • pp.216-223
    • /
    • 2023
  • This study aimed to identify and compare the characteristics of Elymus humidus on common wheat (Triticum aestivum L. cv. Chinse Spring, CS). The seed length, width, height, and weight of E. humidus were smaller than those of the CS. In particular, the germination rate of E. humidus was substantially lower than that of CS. In the anatomical dissection of the leaf, E. humidus showed a considerably different xylem diameter of the main vascular bundle in the main vein; however, there was no difference in the phloem of the main vascular bundle compared with the xylem and phloem of the main vascular bundle in the main vein of CS, although E. humidus showed a leaf structure similar to that of CS. In addition, E. humidus had a thinner epidermis than that of CS. Regarding stomatal traits, E. humidus showed a graminoid stomata type similar to that of CS. On the adaxial and abaxial sides, the density, length, and width of the stomata in E. humidus were smaller than those in CS, whereas the distance between stomata in E. humidus was greater than that in CS. The chromosomes of E. humidus were classified as long and short based on their respective lengths. Long chromosomes were classified based on the ratio of the long arm to the short arm e.g., 1:1 or 2:1. Short chromosomes showed the same trend and some short chromosomes were microsatellites. To evaluate genetic diversity, 38 barley EST markers with polymorphisms between E. humidus and CS were selected from 236 barley EST markers.

Development of Gene Based STS Markers in Wheat

  • Lee, Sang-Kyu;Heo, Hwa-Young;Kwon, Young-Up;Lee, Byung-Moo
    • 한국작물학회지
    • /
    • 제57권1호
    • /
    • pp.71-77
    • /
    • 2012
  • The objective of this study is to develop the gene based sequence tagged site (STS) markers in wheat. The euchromatin enriched genomic library was constructed and the STS primer sets were designed using gene based DNA sequence. The euchromatin enriched genomic (EEG) DNA library in wheat was constructed using the $Mcr$A and $Mcr$BC system in $DH5{\alpha}$ cell. The 2,166 EEG colonies have been constructed by methylated DNA exclusion. Among the colonies, 606 colonies with the size between 400 and 1200 bp of PCR products were selected for sequencing. In order to develop the gene based STS primers, blast analysis comparing between wheat genetic information and rice genome sequence was employed. The 227 STS primers mainly matched on $Triticum$ $aestivum$ (hexaploid), $Triticum$ $turgidum$ (tetraploid), $Aegilops$ (diploid), and other plants. The polymorphisms were detected in PCR products after digestion with restriction enzymes. The eight STS markers that showed 32 polymorphisms in twelve wheat genotypes were developed using 227 STS primers. The STS primers analysis will be useful for generation of informative molecular markers in wheat. Development of gene based STS marker is to identify the genetic function through cloning of target gene and find the new allele of target trait.

Development and Characterization of Anti-gliadin Polyclonal Antibody in Wheat

  • Chang, Suk Joo;Hong, Byung Hee;Seo, Yang Weon
    • 한국작물학회지
    • /
    • 제44권4호
    • /
    • pp.339-344
    • /
    • 1999
  • Immunological method has been applied in biochemical genetic analysis of seed storage proteins. We developed and characterized anti-gliadin polyclonal antibody (AGPab) specific to gliadin fractions whose quality and quantity were known to be associated with wheat end-use quality. Reactions of anti-gliadin polyclonal antibody (AGPab) to gliadin were linearly decreased as AGPab and antigen were diluted. Dot-blot and immunoblot assay showed that produced AGPab specifically reacted to gliadin and mainly $\alpha$-, $\beta$-, and ${\gamma}$-gliadin subunits. Enzyme-linked immuno- sorbent assay (ELISA) was applied for quantifi-cation of gliadins in Korean wheat cultivars and breeding lines by using AGPab. High reactions between AGPab and gliadins were found in wheat cultivars Olmil and Olgeurumil. Significant difference of optical densities for alcohol soluble proteins among crop species was found, as wheat showed the highest value (0.697) followed by rye (0.295), and barley (0.066).

  • PDF

장미 및 밀 배양세포의 생체이물질 대사에서 Cytochrome p450의 역할

  • 이인철
    • Journal of Plant Biology
    • /
    • 제37권2호
    • /
    • pp.223-229
    • /
    • 1994
  • 장미(Rosa sp. cv. Paul's Scarlet)와 밀(Triticum aestivum L.)의 조직 배양체에서 polychlorinated biphenyl(PCB)의 대사를 조사하였다. 조사된 PCB는 2개에서 6개까지의 치환 염소를 보유한 19종류였다. PCB를 투여하여 96시간 동안 배양시킨 결과 장미에서는 9종, 밀에서는 5종류가 30% 이상의 대사율을 나타내었다. 대사율이 높은 PCB들은 모두 2번 위치에 치환 염소를 갖는다는 공통점이 있으며, 대사율이 낮은 PCB일수록 평면적 구조를 갖는 것으로 나타났다. 한편 밀의 배양세포는 para- 위치에 치환 염소를 갖는 PCB에 대한 대사 활성이 전혀 없었다. 두 종의 배양 세포 모두에서 phenobarbital을 처리한 경우 non-p-chlorinated biphenyl의 대사율만이 증가하였으며, parachlorinated biphenyl의 대사 활성은 phenobarbital 처리에 영향을 받지 않았다. 또한 phenobarbital의 처리에 의하여 cinnamate-4-hydroxylase의 활성이 140% 이상 증가하였다. 이상의 결과는 식물체에서의 PCB 대사가 그 구조에 의해 결정될 수 있으며, 특히 para- 위치의 치환 염소를 보유한 종류와 그렇지 않은 종류는 별개의 cytochrome p450의 동위 효소에 의하여 대사될 수 있음을 보여주고 있다.

  • PDF

비소종(Arsenite, Arsenate, DMA)에 따른 토양독성 비교분석

  • 이우미;이주영;임승윤;정혜원;안윤주
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2005년도 총회 및 춘계학술발표회
    • /
    • pp.175-177
    • /
    • 2005
  • Effect of arsenite, arsenate and dimethylarsinic acid (DMA) on the growth of seedling plants were investigated in order to compare the toxicity of arsenic species in soil environments. Test plants were mung bean (Phaseolus radiatus), wheat (Triticum aestivum), barely (Hordeum vulgare), cucumber (Cucumis sativus L.). Seedling growth in As-contaminated soil were significantly reduced in all test species. Arsenite was more toxic than arsenate and DMA. Among the test plants, mung bean was most sensitive to arsenic, followed by cucumber, wheat, and barely.

  • PDF

Correlative Changes between Photosynthetic Activities and Chlorophyll Fluorescence in Wheat Chloroplasts Exposed to High Temperature

  • Young-Nam Hong
    • Journal of Plant Biology
    • /
    • 제37권1호
    • /
    • pp.37-42
    • /
    • 1994
  • Correlative changes between photosynthetic O2 exchange rates and room temperature Chl fluorescence were investigated in wheat (Triticum aestivum L.) chloroplasts treated with high temperature for 5 min. With increasing treatment temperature, photosynthetic O2 evolution rate mediated by PSII was decreased, showing 50% inhibition at 38$^{\circ}C$ (I50). But PSI activity measured by O2 uptake rates was stimulated as a function of increasing temperature. Dark level fluorescence (Fo)-temperature (T) analysis showed that fluorescence rising temperature (Tr), critical temperature (Tc), and peak temperature (Tp) was 38, 43, and 52$^{\circ}C$, respectively. Quenching analysis of Chl fluorescence showed that both the oxidized fraction of plastoquinone (qQ) and degree of thylakoid membrane energization (qNP) increased up to 4$0^{\circ}C$ and then declined dramatically. These results suggest that Tr is correlated with temperature showing a 50% of inhibition of photosynthesis and under mild high temperature stress, qNP is worth regarding as indicator for heat-induced damage of photosynthesis.

  • PDF