DOI QR코드

DOI QR Code

Studies on Cytological Characteristics of Elymus humidus as Genetic Resources Compared to Common Wheat (Triticum aestivum L.)

  • Ji-Yoon Han (Department of Plant Resources, Gyeongsang National University) ;
  • Seong-Wook Kang (Department of GreenBio Science, Gyeongsang National University) ;
  • Sejin Oh (Department of GreenBio Science, Gyeongsang National University) ;
  • Yumi Lee (Department of Smart Agro-Industry, Gyeongsang National University) ;
  • Myoung-Jae Shin (National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Sukyeung Lee (International Technology Cooperation Center, Rural Development Administration) ;
  • Seong-Woo Cho (Department of Plant Resources, Gyeongsang National University)
  • Received : 2023.07.31
  • Accepted : 2023.08.18
  • Published : 2023.09.01

Abstract

This study aimed to identify and compare the characteristics of Elymus humidus on common wheat (Triticum aestivum L. cv. Chinse Spring, CS). The seed length, width, height, and weight of E. humidus were smaller than those of the CS. In particular, the germination rate of E. humidus was substantially lower than that of CS. In the anatomical dissection of the leaf, E. humidus showed a considerably different xylem diameter of the main vascular bundle in the main vein; however, there was no difference in the phloem of the main vascular bundle compared with the xylem and phloem of the main vascular bundle in the main vein of CS, although E. humidus showed a leaf structure similar to that of CS. In addition, E. humidus had a thinner epidermis than that of CS. Regarding stomatal traits, E. humidus showed a graminoid stomata type similar to that of CS. On the adaxial and abaxial sides, the density, length, and width of the stomata in E. humidus were smaller than those in CS, whereas the distance between stomata in E. humidus was greater than that in CS. The chromosomes of E. humidus were classified as long and short based on their respective lengths. Long chromosomes were classified based on the ratio of the long arm to the short arm e.g., 1:1 or 2:1. Short chromosomes showed the same trend and some short chromosomes were microsatellites. To evaluate genetic diversity, 38 barley EST markers with polymorphisms between E. humidus and CS were selected from 236 barley EST markers.

Keywords

References

  1. Adegoye, G. A., O. J. Olorunwa, F. A. Alsajri, C. H. Walne, C. Wijewandana, S. R. Kethireddy, K. N. Reddy, and K. R. Reddy. 2023. Waterlogging Effects on Soybean Physiology and Hyperspectral Reflectance during the Reproductive Stage. Agriculture 13(4) : 844.
  2. Akram, M. 2011. Growth and yield components of wheat under water stress of different growth stages. Bangladesh J. 36(3) : 455-468.
  3. Bushman, B. S., S. R. Larson, I. W. Mott, P. F. Cliften, R. R. C. Wang, N. J. Chatterton, and M. A. Mikel. 2008. Development and annotation of perennial Triticeae ESTs and SSR markers. Genome, 51 : 779-788. https://doi.org/10.1139/G08-062
  4. Choi, S. S., J. Kim, Y. C. Park, and C. H. Kim. 2021. Two unrecorded Elymus taxa (Poaceae) newly added to Korean flora: E. humidus and E. shandongensis. Korean J Pl. Taxon. 51(3) : 294-304. https://doi.org/10.11110/kjpt.2021.51.3.294
  5. Dewey, D. R. 1984. The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In: Gustafsen JP, ed. Gene manipulation in plant improvement. New York, NY, USA: Plenum Press. pp. 209-279.
  6. Du, X., X. Feng, R. Li, Y. Jin, L. Shang, J. Zhao, C. Wang, T. Li, C. Chen, Z. Tian, P. Deng, and W. Ji. 2022. Cytogenetic identification and molecular marker development of a novel wheat-Leymus mollis 4Ns(4D) alien disomic substitution line with resistance to stripe rust and Fusarium head blight. Front. Plant Sci. 13 : 1012939.
  7. Fryns-Claessens, E. and W. V. Cotthem. 1973. A New Classification of the Ontogenetic Types of Stomata. Bot. Rev. 39(1) : 71-138. https://doi.org/10.1007/BF02860071
  8. Gill, B. S., B. Friebe, and T. R. Endo. 1991. Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome 34(5) : 830-839. https://doi.org/10.1139/g91-128
  9. Gong, B., W. Zhu, S. Li, Y. Wang, X. Lili, Y. Wang, J. Zeng, X. Fan, L. Sha, H. Zhang, P. Qi, L. Huang, G. Chen, Y. Zhou, and H. Kang. 2019. Molecular cytogenetic characterization of wheat-Elymus repens chromosomal translocation lines with resistance to Fusarium head blight and stripe rust. BMC Plant Biol. 19 : 590.
  10. Hagras, A. A. A., M. Kishii, K. Sato, H. Tanaka, and H. Tsujimoto. 2005. Extended Application of Barley EST Markers for the Analysis of Alien Chromosomes Added to Wheat Genetic Background. Breed. Sci. 55 : 335-341. https://doi.org/10.1270/jsbbs.55.335
  11. Jones, H. G. 1998. Stomatal control of photosynthesis and transpiration. J. Exp. 49 : 387-398. https://doi.org/10.1093/jxb/49.Special_Issue.387
  12. Jordan, G. J., R. J. Carpenter, B. R. Holland, N. J. Beeton, M. D. Woodhams, and T. J. Brodribb. 2020. Links between environment and stomatal size through evolutionary time in proteaceae. Proc. R. Soc. B. 287 : 20192876.
  13. Kew, Royal Botanic Gardens. https://powo.science.kew.org. Last accessed on May 15, 2023.
  14. Khan, A., A. Ali, Z. Ullah, I. Ali, P. Kaushik, M. N. Alyemeni, A. Rasheed, and H. Sher. 2022. Exploiting the drought tolerance of wild Elymus species for bread wheat improvement. Front. Plant Sci. 13 : 982844.
  15. Komatsu, S., Y. Tsutsui, T. Furuya, H. Yamaguchi, K. Hitachi, K. Tsuchida, and M. Tani. 2022. Proteomic and Biochemical Approaches Elucidate the Role of Millimeter-Wave Irradiation in Wheat Growth under Flooding Stress. Int. J. Mol. Sci. 23(18) : 10360.
  16. Li, J, J. Li, X. Cheng, L. Zhao, Z. Yang, J. Wu, Q. Yang, X. Chen, and J. Zhao. 2021. Molecular Cytogenetic and Agronomic Characterization of the Similarities and Differences Between Wheat-Leymus mollis Trin. and Wheat-Psathyrostachys huashanica Keng 3Ns (3D) Substitution Lines. Front. Plant Sci. 12 : 644896.
  17. Li, M, X. He, D. Hao, J. Wu, J. Zhao, Q. Yang, and X. Chen. 2019. 6-SFT, a Protein from Leymus mollis, Positively Regulates Salinity Tolerance and Enhances Fructan Levels in Arabidopsis thaliana. Int J Mol Sci. 20(11) : 2691.
  18. MAFRA. 2021. Agriculture, food and rural affairs statistics yearbook.
  19. Muramatsu, M., R. Nakatsuji, M. Nagata, K. Yanagihara, and N. Tonai. 1993. Cross-compatibility of Elymus humidus and F/sub 1/hybrid plants with Triticum and Hordeum. Sci. Rep. of the Faculty of Agri. Okayama University 81 : 19-25.
  20. Nunes, T. D. G., D. Zhang, and M. T. Raissig. 2020. Form, development and function of grass stomata. Plant J. 101(4) : 780-799. https://doi.org/10.1111/tpj.14552
  21. Ploschuk, P. A., D. J. Miralles, T. D. Colmer, E. L. Ploschuk, and G. G. Striker. 2018. Waterlogging of Winter Crops at Early and Late Stages : Impacts on Leaf Physiology, Growth and Yield. Front. Plant Sci. 9 : 1863.
  22. Rahim, F. P., T. T. M. Alejandra, Z. V. V. Manuel, T. R. J. Elias, and N. H. Maginot. 2021. Stomatal Traits and Barley (Hordeum vulgare L.) Forage Yield in Drought Conditions of Northeastern Mexico. Plants (Basel). 10(7) : 1318.
  23. RDA. 2020. Nongsaro, https://www.nongsaro.go.kr. Last accessed on May 15, 2023.
  24. Ren, B., J. Zhang, S. Dong, P. Liu, and B. Zhao. 2016. Effects of Waterlogging on Leaf Mesophyll Cell Ultrastructure and Photosynthetic Characteristics of Summer Maize. PLoS One 11(9) : e0161424.
  25. Rodriguez-Gamir, J., G. Ancillo, M. C. Gonzalez-Mas, E. Primo- Millo, D. J. Iglesias, and M. A. Forner-Giner. 2011. Root signalling and modulation of stomatal closure in flooded citrus seedlings. Plant Physiol. Biochem. 49 : 636-645. https://doi.org/10.1016/j.plaphy.2011.03.003
  26. Sasanuma, T., T. R. Endo, and T. Ban. 2002. Genetic diversity of three Elymus species indigenous to Japan and East Asia (E. tsukushiensis, E. humidus and E. dahuricus) detected by AFLP. Genes Genet Syst. 77(6) : 429-438. https://doi.org/10.1266/ggs.77.429
  27. Sato, K., N. Nankaku, K. Yano, and K. Takeda. 2003. Large scale development of barley EST markers. Ikushugaku Kenkyu 5 : 93.
  28. Shew, A., J. B. Tack, L. L. Nalley, and P. Chaminuka. 2020. Yield reduction under climate warming varies among wheat cultivars in South Africa. Nat. Commun. 11 : 4408.
  29. Spilde, L. A. 2013. Influence of Seed Size and Test Weight on Several Agronomic Traits of Barley and Hard Red Spring Wheat. Journal of Production Agriculture 2 : 169-172. https://doi.org/10.2134/jpa1989.0169
  30. Steiner, F., A. M. Zuffo, A. Busch, T. de O. Sousa, and T. Zoz. 2019. Does seed size affect the germination rate and seedling growth of peanut under salinity and water stress? Pesqui. Agropecu. Trop. 49 : e54353.
  31. Wang, S., J. Hu, B. Ren, P. Liu, B. Zhao, and J. Zhang. 2022. Effects of hydrogen peroxide priming on yield, photosynthetic capacity and chlorophyll fluorescence of waterlogged summer maize. Front Plant Sci. 13 : 1042920.
  32. Zabala, J. M., E. Taleisnik, J. A. Giavedoni, J. F. Pensiero, and G. E. Schrauf. 2011. Variability in salt tolerance of native populations of Elymus scabrifolius (Doll) J. H. Hunz from Argentina. Grass Forage Sci. 66(1) : 109-122. https://doi.org/10.1111/j.1365-2494.2010.00768.x
  33. Zhang, A., W. Li, C. Wang, X. Yang, C. Chen, C. Zhu, N. Peng, Z. Tian, Y. Wang, H. Zhang, X. Liu, and W. Ji. 2017. Molecular cytogenetics identification of a wheat - Leymus mollis double disomic addition line with stripe rust resistance. Genome 60(5) : 375-383. https://doi.org/10.1139/gen-2016-0151
  34. Zhang, T., Y. He, R. DePauw, Z. Jin, D. Garvin, X. Yue, W. Anderson, T. Li, X. Dong, T. Zhang, and X. Yang. 2022. Climate change may outpace current wheat breeding yield improvements in North America. Nat. Commun. 13 : 5591.
  35. Zhao, W., L. Liu, Q. Shen, J. Yang, X. Han, F. Tian, and J. Wu. 2020. Effects of Water Stress on Photosynthesis, Yield, and Water Use Efficiency in Winter Wheat. Jounals. Water 12(8) : 2127. https://doi.org/10.3390/w12082127