• 제목/요약/키워드: Triticum

검색결과 179건 처리시간 0.028초

Analysis of Genetic Diversity of Korean Wheat Cultivars Using Microsatellite DNA Polymorphisms

  • Park, Yong-Jin;Cho, Gyu-Taek;Ma, Kyung-Ho;Lee, Sok-Young;Lee, Jung-Ro;Kim, Young-Chang;Cho, Eun-Gi;Kim Chang-Yung;Nam, Jung-Hyun;Rao, V. Ramanatha;Kang, Hee-Kyoung
    • Plant Resources
    • /
    • 제7권2호
    • /
    • pp.93-103
    • /
    • 2004
  • Genetic background and phylogenetic relationships among 20 Korean wheat cultivars were assessed using microsatellites after amplifying with 13 SSR primer pairs. Average allele number per primer pair was 3.36. Genetic similarities for every pair of cultivars ranged from 0.42 to 0.97, with 0.69 of overall average. Korean cultivars were divided into two major groups based on microsatellite DNA polymorphisms. Group I consisted of relatively old cultivars developed until 1970s, and group II contained the recent cultivars developed during 1980s and 1990s. Amongst old elite cultivars/lines, ‘Yukseung 3’, ‘Norin 12’ and ‘Norin 72’ contributed most to the genetic background of cultivars belonging to group I, and ‘Norin 4’, ‘Norin 12’, ‘Norin 43’ and ‘Norin 72’ to group II, respectively. The phylogenetic relationship of Korean wheat cultivars was in accordance with the genealogical data of each cultivar. The genetic background of each cultivar was assessed from the point of breeding and germplasm management such as variety identification and duplicated accessions for assisting in developing a system for the registration of new variety based on the molecular characterization in future.

  • PDF

한국에서의 오이모자익 바이러스의 기주범위에 관한 연구 (Studios on the Host Range of Cucumber Mosaic Virus in Korea)

  • 정봉조;박해철;이순형
    • 한국응용곤충학회지
    • /
    • 제14권4호
    • /
    • pp.185-192
    • /
    • 1975
  • 가. CMV의 기주조사결과, 43과 145종을 공시하여 27과 71종이 기주로 판명되었으며 그중 24두 57종이 Systemic mosaic을 나타내었다. 나. CM V의 새로운 기주로 확인된 식물은 쇠별꽃 쇠무릎, 아게라탐, 중대가리풀, 천인국, 지칭개, 씀바귀, 그늘취, 유채, 다닥냉이, 수염가래꽃, 좀명아주, 실사초, 깨풀, 새콩, 벌노랑이, 팥, 큰기린초, 들깨풀, 들깨, 개곽량, 아마, 주름잎, 버어베나의 24종이 판명되었다. 다. 다른 연구자의 보고에는 감수성으로 나타났으나 본 시험에서 음성으로 나타난 식물은 양파, 맨드라미, 당근, 쑥, 과꽃, 망초, 해바라기, 만수국, 봉선화, 양배추, 배추, 스위트알리슘, 무, 고구마, 대두, 강남콩, 나팔백합, 양귀비, 수수, 밀, 옥수수, 소루쟁이, 채송화 등 23종이었다.

  • PDF

소맥의 유수, 절간 및 엽초의 신장시기와의 관계 (Relationship among Elongation Periods of Young Spikes, Internodes and Leaf-sheaths in Wheat (Triticum aestivum L.))

  • 김석동;하용웅
    • 한국작물학회지
    • /
    • 제27권3호
    • /
    • pp.238-242
    • /
    • 1982
  • 단간 조숙품종인 그루밀을 재료로 하여 '80년 4월 15일부터 5월 30일까지 5일 간격으로 10회에 걸쳐 유수, 절간, 엽초 등의 길이를 조사한 자료를 가지고 이들 각각의 신장과 상호 관련성을 분석한 결과를 요약하면 다음과 같다. 1. 동기간(4월 15일- 5월 30일) 중에 유수는 0.6cm에서 8.3cm로 신장하였으며, 출수전 20일(4월 25일)부터 급신장하기 시작하여 술수전 5일(5월 10일)에 그 신장을 거의 완료하였는데 이 기간 중 일당 4.4mm의 신장을 보였고 가장 신장량이 컸던 시기는 술수전 15일부터 10일 사이로 이 때는 일당 6.5mm씩 신장하였다. 2. 절간장중 제 3절간의 신장도 유수의 신장시기와 거의 일치하였으며 출수전 20일부터 급신장하여 출수전 5일에 그 신장을 완료하였다. 3. 엽초장 중 제 1 엽초의 신장시기와 그 양상이 유수의 신장과 또한 일치하였다. 4 유수는 제3절간장과 $r=.974^{***}$, 제1 엽초장과는 $r=.954^{***}$의 상관을 보였고, 제3절간장은 제1엽초장과 $r=.995^{***}$로 이들은 서로 고도의 유의적인(0.1%) 정의 상관을 보였다.

  • PDF

Expression of the TaCR1 Gene Induced by Hessian Fly Larval Infestation in Wheat Carrying a H21 Gene.

  • Jang, Cheol-Seong;Seo, Yong-Weon
    • 한국작물학회지
    • /
    • 제49권2호
    • /
    • pp.148-153
    • /
    • 2004
  • The Hessian fly, Mayetiola destructor (Say), is known to be one of the major insect herbivores of wheat worldwide. In order to provide molecular events on interactions of the NIL with H21 and larvae of Hessian fly biotype L, the TaCR1 gene, Triticum aestivum cytokinin repressed 1, was isolated through the suppression subtractive hybridization, which was constructed using stems of the NIL with H21 at 6 days after infestation as tester and stems of the recurrent parent Coker797 without H21 at 6 days after infestation as driver. Transcript levels of TaCR1 mRNA in the NIL with H21 were highest at 6 days after infestation but in the Coker797 without H21 until 8 days were similar with those of non-infested plants. Expression of the TaCR1 gene was decreased at early time and then recovered after wounding or $H_2O$$_2$ treatment as well as 6-BAP treatment. Transcripts levels of the TaCR1 gene was changed after MeJA, SA, ethephone, or ABA treatment. In drought treatment, the TaCRl gene were increased at early stage of stress and then decreased at late stage. Expression of the TaCRl gene was continued to decrease through 24 h in the cold treatment. Although the TaCRl gene is increased through infestation in NIL with H21, further study was required to elucidate a role on resistance against larvae of Hessian fly. However, the TaCR1 gene could be used as marker gene on response of plants against abiotic stresses as well as application of plants with several hormones.

Disinfection of Penicillium-infected Wheat Seed by Gaseous Chlorine Dioxide

  • Jeon, Young-ah;Lee, Ho-sun;Lee, Young-yi;Lee, Sokyoung;Sung, Jung-sook
    • 식물병연구
    • /
    • 제21권2호
    • /
    • pp.45-49
    • /
    • 2015
  • Seeds of wheat (Triticum aestivum L. cv. Olgeurumil) were infected with Penicillium sp. at mean infection rate of 83%. Penicillium sp. was detected in endosperm with bran but not in embryo. Gaseous chlorine dioxide ($ClO_2$) effectively inhibited growth of Penicillium sp. at concentration of 5 to $20{\mu}g/ml$. As treatment duration was extended from 1 to 3 h, growth of Penicillium sp. was completely suppressed even at $10{\mu}g/ml$. There was no significant reduction in the incidence of Penicillium sp. at 30% relative humidity (RH). However, the incidence of Penicillium sp. was 27.7% at 50% RH, further those were 3.5% and 0.2% at 70% and 80% RH, respectively. Seed germination was not affected by $ClO_2$ treatment at all the RH conditions. Water-soaked seeds (30% seed moisture content) showed a drastic reduction in the incidence of Penicillium sp. when treated at more than $10{\mu}g/ml$ of $ClO_2$. The incidences of Penicillium sp. were 3.3, 1.8 and 1.2% at 10, 15 and $20{\mu}g/ml$, respectively. The incidence of Penicillium sp. in dry seeds with 9.7% seed moisture content did not reduce when treated with 5 and $10{\mu}g/ml$ at 50% RH although it tended to decrease as $ClO_2$ concentration increased to $20{\mu}g/ml$. Seed germination was not affected by $ClO_2$ treatment at the tested concentrations. These results indicated that gaseous $ClO_2$ was effective disinfectant to wheat seeds infected with Penicillium sp. and that the effectiveness of $ClO_2$ strongly increased when moisture content around or inside of the seed was increased.

In Vitro Wheat Immature Spike Culture Screening Identified Fusarium Head Blight Resistance in Wheat Spike Cultured Derived Variants and in the Progeny of Their Crosses with an Elite Cultivar

  • Huang, Chen;Gangola, Manu P.;Kutcher, H. Randy;Hucl, Pierre;Ganeshan, Seedhabadee;Chibbar, Ravindra N.
    • The Plant Pathology Journal
    • /
    • 제36권6호
    • /
    • pp.558-569
    • /
    • 2020
  • Fusarium head blight (FHB) is a devastating fungal disease of wheat (Triticum aestivum L.). The lack of genetic resources with stable FHB resistance combined with a reliable and rapid screening method to evaluate FHB resistance is a major limitation to the development of FHB resistant wheat germplasm. The present study utilized an immature wheat spike culture method to screen wheat spike culture derived variants (SCDV) for FHB resistance. Mycotoxin concentrations determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) correlated significantly (P < 0.01) with FHB severity and disease progression during in vitro spike culture. Selected SCDV lines assessed for FHB resistance in a Fusarium field disease nursery in Carman, Manitoba, Canada in 2016 showed significant (P < 0.01) correlation of disease severity to the in vitro spike culture screening method. Selected resistant SCDV lines were also crossed with an elite cv. CDC Hughes and the progeny of F2 and BC1F2 were screened by high resolution melt curve (HRM) analyses for the wheat UDP-glucosyl transferase gene (TaUGT-3B) single nucleotide polymorphism to identify resistant (T-allele) and susceptible (G-allele) markers. The progeny from the crosses were also screened for FHB severity using the immature spike culture method and identified resistant progeny grouped according to the HRM genotyping data. The results demonstrate a reliable approach using the immature spike culture to screen for FHB resistance in progeny of crosses in early stage of breeding programs.

밀의 고분자 글루테닌 단백질 (High Molecular Weight Glutenin Subunit in Common Wheat (Triticum aestivum L.))

  • 이종열;김영태;강천식;임선형;하선화;안상낙;김영미
    • 한국육종학회지
    • /
    • 제43권5호
    • /
    • pp.479-489
    • /
    • 2011
  • Gluten is the main functional component of wheat, and is the main source of the viscoelastic properties in a dough. One of the gluten group is glutenin, which is composed of high molecular weight (HMW) and low molecular weight (LMW) subunits. The HMW glutenin subunits (HMW-GS) have been shown to play a crucial role in determining the processing properties of the grain. They are encoded by the Glu-1 loci located on the long arms of homeologous group one chromosomes, with each locus comprising two genes encoding x- and y-type subunits. The presence of certain HMW subunits is positively correlated with good bread-making quality. The highly conserved N- and C- terminal contaning cystein residues which form interand intra-chain disulphide bonds. This inter chain disulphide bonds stabilize the glutenin polymers. In contrast, the repetitive domains that comprise the central part of the HMW-GS are responsible for the elastic properties due to extensive arrays of interchain hydrogen bonds. In this review, we discuss HMW-GS, HMW-GS structure and gluten elasticity, relationship between HMW-GS and bread wheat quality and genetic engineering of the HMW-GS.

A Study on the Utilization of Urban Garden Design Derived from the Traditional Farming Method Gyeonjongbeop from the Joseon Period: Focused on Imwongyeongjeji Bolliji

  • Hong, In-Kyoung;Yun, Hyung-Kwon;Chae, Young;Lee, Sang-Mi;Jung, Young-Bin;Lee, Mi-Ra
    • 인간식물환경학회지
    • /
    • 제23권4호
    • /
    • pp.423-432
    • /
    • 2020
  • Background and objective: Traditional farming is winning recognition as a sustainable alternative farming method. As urban farming increases in South Korea, it is crucial to develop more sustainable farming techniques. Gyeonjongbeop is the traditional farming method introduced in the Joseon period. This study was conducted to propose a productive garden model suitable for urban farming through the interpretation of traditional farming methods contained in Imwongyeongjeji Bolliji and to test the model on an actual field. Methods: Using the design and cropping system of Gyeonjongbeop as the research materials, we reviewed its tillage and cultivation and examined the applicability. We proposed a modified method by extracting parts applicable to urban farming. According to the methods, we created a garden with ridges and furrows, cultivated proper vegetables, and evaluated their growth. Results: Raphanus sativus, Allium fistulosum L., Brassica juncea, and Spinacia oleracea grown on ridges showed higher growth than those grown on a conventional flat field. The growth of Hordeum vulgare var. hexastichon and Triticum aestivum L. on furrows was also slightly higher. This proved that the method could make up for the deficiencies of barley and wheat that are weak against winds and cold and are easily destroyed by the spring rains. Conclusion: Ridge and furrow cultivation derived from Gyeonjongbeop can be an efficient urban farming system compared to the conventional cultivation in flat fields. The system can use fallow lands in winter for year-round urban farming. In addition, the application of the traditional farming system can enhance the humanistic value of urban farming.

Growth and Quality Characteristics in Response to Elevated Temperature during the Growing Season of Korean Bread Wheat

  • Chuloh Cho;Han-Yong Jeong;Yulim Kim;Jinhee Park;Chon-Sik Kang;Jong-Min Ko;Ji-Young Shon
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.124-124
    • /
    • 2022
  • Wheat (Triticum aestivum L.) is the major staple foods and is in increasing demand in the world. The elevated temperature due to changes in climate and environmental conditions is a major factor affecting wheat development and grain quality. The optimal temperature range for winter wheat is between 15~25℃, it is necessary to study the physiological characteristic of wheat according to the elevated temperature. This study presents the effect of elevated temperature on the yield and quality of two Korean bread wheat (Baekkang and Jokyoung) in a temperature gradient tunnel (TGT). Two bread wheat cultivars were grown in TGT at four different temperature conditions, i.e. TO control (near ambient temperature), T1 control+1℃, T2 control+2℃, T3 control+3℃. The period from sowing to heading stage has accelerated, while the growth properties including culm length, spike length and number of spike, have not changed by elevated temperature. On the contrary, the number of grains per spike and grain yield was reduced under T3 condition compared with that of control condition. In addition, the. The grain filling rate and grain maturity also accelerated by elevated temperature (T3). The elevating temperature has led to increasing protein and gluten contents, whereas causing reduction of total starch contents. These results are consistent with reduced expression of starch synthesis genes and increased gliadin synthesis or gluten metabolism genes during late grain filling period. Taken together, our results suggest that the elevated temperature (T3) leads to reduction in grain yield regulating number of grains/spike, whereas increasing the gluten content by regulating the expression of starch and gliadin-related genes or gluten metabolism process genes expression. Our results should be provide a useful physiological information for the heat stress response of wheat.

  • PDF

A Wheat Variety, "Hwanggeumal" with Good Bread Quality, Red Grain, Partial Waxy, Tolerance to PHS

  • Chon-Sik Kang;Chang-Hyun Choi;Kyeong-Hoon Kim;Kyeong-Min Kim;Go Eun Lee;Jin-Hee Park;Jong-min Ko
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.203-203
    • /
    • 2022
  • A new winter wheat(Triticum aestivum L.) cultivar "Hwanggeumal" was developed by the NICS(National Institute of Crop Science), RDA(Rular Dvelopment Administraion) in 2019. It was derived from a cross of the "Jokyoung//Kauz/Rayon" and "Jopoom" in 2008. It had advanced generation through bulk and pedigree method for seven years and designated line name "Jeonju398" after AYT(Advance Yield Trial) test for two years. And "Hwangeumal" was designated variety name after RYT(Regional Yield Trial) test in eight locations around Korea for two years from 2018 to 2019. Its heading date was April 19 and maturity date was May 31, which were similar to Jokyoung. "Hwanggeumal" had shorter plant height(75 cm) and spike length(7.1 cm), spikes per m2(699) and lower 1,000 grain weight(44.2 g) than "Jokyoung"(78 cm, 8.2 cm, 776, 46.6 g, respectively). "Hwanggeumal" was showed weak to winter hardiness and susceptible to powdery mildew but tolerance to PHS(Pre-harvest sprouting). The average grain yield in the AYT was 6.2 ton/ha, which were 10% more than "Jokyoung" And in the RYT was 5.1 ton/ha in upland and 4.4 ton/ha in paddy field, which were lower than "Jokyoung", respectively. "Hwanggeumal"s flour yield (71.4%) and flour lightness (91.82) showed similar to "Jokyung" and higher protein content (14.0%) and gluten content (10.3%) and SDS-sedimentation volume (60.3ml). These result showed that the "Hwanggeumal" dough strength of flour is strong than "Jokyung". "Hwanggeumal"s HMW-GS(High molecular weight gluten subunits) composition are Glu-D1 (5+10), Granule-bound starch synthase(GBSS) composition are Wx-A1 (a), Wx-B1 (b), Wx-D1 (a) and composition of Puroindolines are Pina-D1(a), Pinb-D1(b).

  • PDF