• Title/Summary/Keyword: Tripler

Search Result 25, Processing Time 0.018 seconds

Design and Fabrication of a Compact Ka-Band Synthesizer Module (소형화된 Ka-대역 주파수 합성기 모듈 설계 및 제작)

  • Kim, Hyun-Mi;Yang, Seong-Sik;Lee, Man-Hee;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.5 s.120
    • /
    • pp.511-521
    • /
    • 2007
  • In this paper, we designed and fabricated a Ka-band synthesizer module. In addition, the systematic layout procedure and the test procedure were presented for the construction of compact synthesizer. To implement the Ka-band synthesizer, X-band VCO is employed as VCO and its frequency was multiplied by 3 with frequency tripler. The fabricated frequency synthesizer shows a frequency tuning range of 500 MHz, output power of about 14 dBm, and a phase noise of -96.17 dBc/Hz at the 100 kHz offset frequency.

A Study on the Predistortion Linearizer Controlled by the Individual Order with Frequency Multiplier (주파수 체배기를 이용한 개별 차수 조정 전치왜곡 선형화기의 설계 및 구현)

  • 민준기;이기학;이근태;안창돈;홍의석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.12A
    • /
    • pp.1019-1024
    • /
    • 2003
  • In the thesis, we propose a new type of the predistortion linearizer using frequency multiplier The linearizer utilizing the 2nd and 3th harmonic used the individual control of the 3rd and 5th order intermodulation distortion(IMD) component. This structure is composed of wilkinson power combiner for combine and isolation of output signal, 3rd order IMD product controller using doubler and 5th order IMD product controller using tripler. The proposed predistortion linearizer controlled by individual order is obtained for about -16 dBc and 18 dBc of 3rd order and 5th order IMD components, respectively, over the frequency band 870 MHz to 880 MHz at the output power of 34 dBm/tone.

Implementation of An 1.5Gbit/s Wireless Data Transmission System at 300GHz Band (300GHz 대역 1.5Gbit/s 무선 데이터 전송 시스템 구현)

  • Lee, Won-Hui;Chung, Tae-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.2
    • /
    • pp.1-6
    • /
    • 2011
  • In this paper, an 1.5Gbit/s wireless data transmission system using the carrier frequency of 300 GHz band was implemented. The RF front-end was composed of schottky diode sub-harmonic mixer, frequency tripler, and horn antennas for transmitter and receiver, respectively. The LO frequencies of sub-harmonic mixer are 150GHz for transmit chain and 156GHz for receive chain. The ASK(Amplitude Shift Keying) modulation was used in the transmitter and the envelope detection method was used in the heterodyne receiver. The conversion loss of sub-harmonic mixer and implementation system loss were measured to be 9.8dB and 1.2dB, respectively. The 1.5Gbit/s video signal with HD-SDI format was transmitted over wireless distance of 40cm without optical lens(4.2m with optical lens) and displayed on HDTV at the transmitted average output power of $20{\mu}W$.

A DESIGN STUDY OF 100㎓ BAND LOCAL OSCILLATOR SYSTEM BY USING YIG OSCILLATOR (YIG 발진기를 이용한 100㎓ 대역 국부발진 시스템 설계연구)

  • Lee, Chang-Hoon;Kim, K.D.;Kim, H.R.;Jung, M.H.;Han, S.T.;Jae, D.H.;Kim, T.S.
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.3
    • /
    • pp.185-196
    • /
    • 2003
  • In this paper, we make a design study for a local oscillator system of the 100 ㎓ band cosmic radio receiving system. We use the YIG oscillator with digital driver which is the main oscillator. This oscillator has a good frequency and phase stability at some temperature variation, and the easy computer aided control characteristics. This total system designed to two subsystem, first is the oscillator system include YIG oscillator, tripler, harmonic mixer and triplexer etc., second is the PLL system to supply the precise and stable local oscillator frequency to mixer. The proposed local oscillator system in this paper can be used in a single or multi pixel receiver because this system can be lock the local oscillator frequency automatically using PC.

Design and Fabrication of 26.4 GHz Local Oscillator for Satellite Payload (위성 탑재체용 26.4 GHz 국부발진기의 설계 및 제작)

  • Shin Dong-Hwan;Ryu Keun-Kwan;Chang Dong-Pil;Lee Moon-Que;Yom In-Bok;Oh Seung-Hyeub
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.2A
    • /
    • pp.194-200
    • /
    • 2006
  • A 26.4 GHz phase locked oscillator(PLO) for communication satellite transponder is developed. The PLO consists of fundamental frequency generation module(FFGM) and frequency multiplication part(FMP). The signal of 26.4 GHz is generated through frequency tripling process of 8.8 GHz fundamental frequency. Phase locking technique using sampling phase detector(SPD) is adopted to design the FFGM. The MMIC tripler and amplifier are also designed for the reduction of the size and mass of FMP. The phase noise characteristics are exhibited as -96 dBc/Hz at 10 tHz offset frequency and -105 dBc/Hz at 100 kHz offset frequency, respectively, with the output power over 11 dBm. All performance parameters are complied with the design requirements.