• Title/Summary/Keyword: Triple-band

Search Result 136, Processing Time 0.342 seconds

Triple-band Compact Chip Antenna using Coupled Meanderline Structure for Mobile RFID/PCS/WiBro (결합 미엔더 선로을 이용한 모바일 RFID/PCS/WiBro 삼중 대역 소형 칩 안테나)

  • Lim, Hyung-Jun;Lee, Hong-Min
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.225-230
    • /
    • 2005
  • The proposed Triple-band Compact Chip Antenna using Coupled Meander line and stacked meander Structure for Mobile RFID/PCS/WiBro. The proposed antenna is designed to operate at 900, 1800, and 2350 MHz, and is realized by parasitic coupled and stacked a meander line. Meander lines are using extend length of effective current path more than monopole and contribute miniaturization. The coupled meander line controls the excitations of the Mobile RFID and PCS, stacked meander line controls the excitation of the WiBro. The proposed antenna size is $11mm\times22.5mm\times1mm$. The antenna supports 900MHz, 1800MHz and 2350MHz operations simultaneously with bandwidths of 33MHz, 230MHz and 100MHz, respectively. The proposed antenna gains are result of simulation to be -0.8dBi, 3dBi and 3.8dBi, respectively.

  • PDF

Optimum design of Triple-band PIFA using Evolution strategy (Evolution strategy 기법을 이용한 삼중대역 PIFA 최적 설계)

  • Ko, Jae-Hyeong;Paek, Hyun;Kim, Koon-Tae;Kim, Tae-Seong;Park, Doh-Hyeon;Ahn, Chang-Hoi;Kim, Hyeong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1561_1562
    • /
    • 2009
  • In this paper, designed triple-band antenna of PIFA(Planar Inverted-F Antenna) structure with U-slot. We designed optimal PIFA structure using Evolution Strategy(ES) about two U-slot parameters. We materialized API(Application Program Interface) about EM simulator and Excel using VB(Visual Basic). The result of ES for triple-band PIFA are resonant frequency of 430MHz, 910.5MHz, 2458.5MHz.

  • PDF

Design and fAbrication of Triple Band WLAN Antenna Applicable to Wi-Fi 6E Band with DGS (DGS를 갖는 Wi-Fi 6E 대역을 위한 삼중대역 WLAN 안테나 설계 및 제작)

  • Sang-Wook Park;Gi-Young Byun;Joong-Han Yoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.2
    • /
    • pp.345-354
    • /
    • 2024
  • In this paper, we propose a triple band WLAN antenna for Wi-Fi 6E band with DGS. The proposed antenna has the characteristics required frequency band and bandwidth by considering the interconnection of two strip lines and three areas on the ground place. The total substrate size is 31 mm (W) × 50 mm (L), thickness (h) 1.6 mm, and the dielectric constant is 4.4, which is made of 22 mm (W6 + W4 + W5) × 43mm (L1 + L2 + L3 + L5) antenna size on the FR-4 substrate. From the fabrication and measurement results, bandwidths of 340 MHz (1.465 to 1.805 GHz) for 900 MHz band, 480 MHz (2.155 to 2.635 GHz) for 2.4 GHz band and 1950 MHz (4.975 to 6.925 GHz) for 5.0/6.0 GHz band were obtained on the basis of -10 dB. Also, gain and radiation pattern characteristics are measured and shown in the frequency triple band as required.

Multi-Current Distributed Folded Monopole Antenna for Triple Band Mobile Phone Handset (3중 대역 휴대폰 단말기용 다중 전류 분포 폴디드 모노폴 안테나)

  • Son, Tae-Ho;Lee, Jae-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.10
    • /
    • pp.1189-1195
    • /
    • 2007
  • We design and fabricate, in this parer, a triple band folded monopole antenna for the folder type mobile phone handset that can be served GSM/DCS/USPCS mobile phone system. Antenna structure is modified meander shape which is obtained both extension of antenna physical length for GSM band and same directional multi-currents flowing on the antenna conductor surface for DCS/USPCS band. This antenna has as good performances as high radiation resistance and gain increment, and would be applied to mobile phone handset that is not able to be performed by internal antenna. By measurement, fabricated antenna by the press process shows under VSWR 3:1 at closed folder state and 2:1 at opened folder state over whole GSM/DCS/USPCS band, and has maximum gain as -0.02 dBi for GSM, +0.2 dBi for DCS, +0.78 dBi for USPCS band with almost omnidirectional H-plane radiation pattern.

Design of Ka/Ku Band Frequency Selective Surface with Triple Square Loop Slot Array (삼중 사각 루프 슬롯 배열 형태를 갖는 Ka/Ku 대역 주파수 선택 반사기 설계)

  • 고지환;조영기
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.10
    • /
    • pp.1060-1070
    • /
    • 2003
  • The frequency selective surface for use in Ka/Ku band parabolic antenna of domestic satellite communications is proposed. The frequency selective surface structure consists of the infinite periodic arrays of the triple square loop slot element with narrow width on the honeycomb structure of multi-layered dielectric. The frequency selective surface is fabricated and measured. The good agreement is obtained between theory and experiment. It is demonstrated that the frequency selective surface passes 14/12 GHz band wave while reflecting 30/20 GHz band wave as required.

A Triple Band Deep-Tissue Antenna for Biomedical Implants (심부 조직 인체 삽입용 세 가지 밴드 안테나)

  • Yoo, Hyoungsuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.383-386
    • /
    • 2017
  • In this study, we introduce a triple-band flexible implantable antenna that is tuned by using a ground slot in three specific bands, namely Medical Implanted Communication Service (MICS: 402-405 MHz) for telemetry, the midfield band (lower gigahertz: 1.45-1.6 GHz) for Wireless Power Transfer (WPT), and the Industrial, Scientific and Medical band (ISM: 2.4-2.45 GHz) for power conservation. This antenna is wrapped inside a printed 3D capsule prototype to show its applicability in different implantable or ingestible devices. The telemetry performance of the proposed antenna was simulated and measured by using a porcine heart. From the simulation and measurement, we found that use of a ground slot in the implantable antenna can improve the antenna performance and can also reduce the Specific Absorption Rate (SAR).

Triple-band Compact Chip Antenna Using Parasitic Meander line and Stacked Meander line for GPS/IMT2000/Wireless LAN (기생 미엔더 라인과 적층 미엔더 라인을 이용한 GPS/IMT2000/Wireless LAN 삼중대역 소형 칩 안테나)

  • Kim Ho-Yong;Lee Hong-Min
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.5 s.347
    • /
    • pp.156-161
    • /
    • 2006
  • In this paper, GPS/IMT2000/Wireless LAN compact chip antenna is designed for mobile communication system. The proposed antenna size is $10.2mm{\times}21mm{\times}1mm$. It consists of three meander lines. dual resonance frequencies is achieved by two effective current paths using two meander lines and via. also The parasitic meander line structure is added. The coupling is adjusted by arranging parasitic meander line for triple-band. The fabricated antenna achieve triple-band. The resonance frequencies are 1.672GHz, 2.092GHz, 2.504GHz. The impedance bandwidths of each resonance frequencies are 156MHz, 272MHz, 64MHz. The maximum radiation gains of fabricated antenna are 0.08dBi, 1.67dBi, -1.44dBi. The proposed antenna achieve quasi monopole radiation pattern.

Design and Manufacture of Triple-BandWidth Antennas for WLAN / WiMAX system (WLAN/WiMAX를 지원하는 삼중대역 안테나 설계 및 제작)

  • Park, Won-Young;Eom, Hye-Gyeong;Yoon, Joong-Han
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.2
    • /
    • pp.338-346
    • /
    • 2018
  • In this paper, a monopole antenna applicable to WLAN/WiMAX system is designed and fabricated. The proposed antenna is designed to have three lines and one slit based on microstrip feeding to have triple band characteristics. We optimized the lengths and slits of the three lines to obtain the required characteristics for this paper. The proposed antenna has $32.0mm(W2+W3){\times}47.1mm$ (L3+L4+L5+L8) on a dielectric substrate of $42.5mm(W1){\times}52mm(L1){\times}1.0mm$ size. From the fabrication and measurement results, bandwidths of 158 MHz (813 to 971MHz), 630 MHz (2.10 to 2.73GHz) and 1190 MHz (4.83 to 6.02GHz) were obtained based on the impedance bandwidth. The fabricated antenna also obtained the measured gain and radiation pattern in the required triple band.

Development of an Optimal Design Program for a Triple-Band PIFA Using the Evolution Strategy (진화 알고리즘을 이용한 삼중 대역 PIFA 최적 설계 프로그램의 구현)

  • Ko, Jae-Hyeong;Kim, Koon-Tae;Kim, Dong-Hun;Kim, Hyeong-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.8
    • /
    • pp.746-752
    • /
    • 2009
  • In this paper, we deal with the development of an optimal design program for a triple-band PTFA(Planar Inverted-F Antenna) of 433 MHz, 912 MHz and 2.45 GHz by using evolution strategy. Generally, the resonance frequency of the PIFA is determined by the width and length of a U-type slot used. However the resonance frequencies of the multiple U slots are varied by the mutual effect of the slots. Thus the optimal width and length of U-type slots are determined by using an optimal design program based on the evolution strategy. To achieve this, an interface program between a commercial EM analysis tool and the optimal design program is constructed for implementing the evolution strategy technique that seeks a global optimum of the objective function through the iterative design process consisting of variation and reproduction. The resonance frequencies of the triple-band PIFA yielded by the optimal design program are 430 MHz, 910.5 MHz and 2.458 GHz that show a good agreement to the design target values.