• Title/Summary/Keyword: Triple-A Algorithm

Search Result 87, Processing Time 0.035 seconds

A Round Reduction Attack on Triple DES Using Fault Injection (오류 주입을 이용한 Triple DES에 대한 라운드 축소 공격)

  • Choi, Doo-Sik;Oh, Doo-Hwan;Bae, Ki-Seok;Moon, Sang-Jae;Ha, Jae-Cheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.2
    • /
    • pp.91-100
    • /
    • 2011
  • The Triple Data Encryption Algorithm (Triple DES) is an international standard of block cipher, which composed of two encryption processes and one decryption process of DES to increase security level. In this paper, we proposed a Differential Fault Analysis (DFA) attack to retrieve secret keys using reduction of last round execution for each DES process in the Triple DES by fault injections. From the simulation result for the proposed attack method, we could extract three 56-bit secret keys using exhaustive search attack for $2^{24}$ candidate keys which are refined from about 9 faulty-correct cipher text pairs. Using laser fault injection experiment, we also verified that the proposed DFA attack could be applied to a pure microprocessor ATmega 128 chip in which the Triple DES algorithm was implemented.

P-Triple Barrier Labeling: Unifying Pair Trading Strategies and Triple Barrier Labeling Through Genetic Algorithm Optimization

  • Ning Fu;Suntae Kim
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.111-118
    • /
    • 2023
  • In the ever-changing landscape of finance, the fusion of artificial intelligence (AI)and pair trading strategies has captured the interest of investors and institutions alike. In the context of supervised machine learning, crafting precise and accurate labels is crucial, as it remains a top priority to empower AI models to surpass traditional pair trading methods. However, prevailing labeling techniques in the financial sector predominantly concentrate on individual assets, posing a challenge in aligning with pair trading strategies. To address this issue, we propose an inventive approach that melds the Triple Barrier Labeling technique with pair trading, optimizing the resultant labels through genetic algorithms. Rigorous backtesting on cryptocurrency datasets illustrates that our proposed labeling method excels over traditional pair trading methods and corresponding buy-and-hold strategies in both profitability and risk control. This pioneering method offers a novel perspective on trading strategies and risk management within the financial domain, laying a robust groundwork for further enhancing the precision and reliability of pair trading strategies utilizing AI models.

A Study on the Design of Triple-tuned Filter for Line Commutated Converter HVDC (HVDC시스템 적용을 위한 Triple-tuned 필터 설계방법 연구)

  • Lee, Seong-Doo;Choi, Soon-Ho;Kim, Chan-Ki;Cha, HanJu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.9
    • /
    • pp.1288-1296
    • /
    • 2015
  • The ac side current of a line commutated converter(LCC) high voltage direct current (HVDC) is characterized by highly non-sinusoidal waveform. If the harmonic current is allowed to flow in the connected ac network, it may cause unacceptable levels of distortion. Therefore, ac side filters are required as part of the total HVDC converter station, in order to reduce the harmonic distortion of the ac side current and voltage to acceptably low levels. The ac filters are also employed to compensate the requested reactive power because LCC HVDC also consume substantial reactive power. Among different types of filters, triple-tuned filters have been widely utilized for HVDC system. This paper presents two design methods of triple-tuned filter; equivalent method and parametric method. Using a parametric method, in particular this paper proposes a design algorithm for a triple tuned filter. Finally, the performance of the design algorithm is evaluated for a 250kV HVDC system in Jeju island. The results cleary demonstrate the effectiveness of proposed design method in harmonics reduction.

Optimization of Triple Response Systems by Using the Dual Response Approach and the Hooke-Jeeves Search Method

  • Fan, Shu-Kai S.;Huang, Chia-Fen;Chang, Ko-Wei;Chuang, Yu-Chiang
    • Industrial Engineering and Management Systems
    • /
    • v.9 no.1
    • /
    • pp.10-19
    • /
    • 2010
  • This paper presents an extended computing procedure for the global optimization of the triple response system (TRS) where the response functions are nonconvex (nonconcave) quadratics and the input factors satisfy a radial region of interest. The TRS arising from response surface modeling can be approximated using a nonlinear mathematical program involving one primary (objective) function and two secondary (constraints) functions. An optimization algorithm named triple response surface algorithm (TRSALG) is proposed to determine the global optimum for the nondegenerate TRS. In TRSALG, the Lagrange multipliers of target (secondary) functions are computed by using the Hooke-Jeeves search method, and the Lagrange multiplier of the radial constraint is located by using the trust region (TR) method at the same time. To ensure global optimality that can be attained by TRSALG, included is the means for detecting the degenerate case. In the field of numerical optimization, as the family of TR approach always exhibits excellent mathematical properties during optimization steps, thus the proposed algorithm can guarantee the global optimal solution where the optimality conditions are satisfied for the nondegenerate TRS. The computing procedure is illustrated in terms of examples found in the quality literature where the comparison results with a gradient-based method are used to calibrate TRSALG.

An analytical algorithm for assessing dynamic characteristics of a triple-tower double-cable suspension bridge

  • Wen-ming Zhang;Yu-peng Chen;Shi-han Wang;Xiao-fan Lu
    • Structural Engineering and Mechanics
    • /
    • v.90 no.4
    • /
    • pp.325-343
    • /
    • 2024
  • Triple-tower double-cable suspension bridges have increased confinement stiffness imposed by the main cable on the middle tower, which has bright application prospects. However, vertical bending and torsional vibrations of the double-cable and the girder are coupled in such bridges due to the hangers. In particular, the bending vibration of the towers in the longitudinal direction and torsional vibrations about the vertical axis influence the vertical bending and torsional vibrations of the stiffening girders, respectively. The conventional analytical algorithm for assessing the dynamic features of the suspension bridge is not directly applicable to this type of bridge. This study attempts to mitigate this problem by introducing an analytical algorithm for solving the triple-tower double-cable suspension bridge's natural frequencies and mode shapes. D'Alembert's principle is employed to construct the differential equations of the vertical bending and torsional vibrations of the stiffening girder continuum in each span. Vibrations of stiffening girders in each span are interrelated via the vibrations of the main cables and the bridge towers. On this basis, the natural frequencies and mode shapes are derived by separating variables. The proposed algorithm is then applied to an engineering example. The natural frequencies and mode shapes of vertical bending and torsional vibrations derived by the analytical algorithm agreed well with calculations via the finite element method. The fundamental frequency of vertical bending and first- and second-order torsion frequencies of double-cable suspension bridges are much higher than those of single-cable suspension bridges. The analytical algorithm has high computational efficiency and calculation accuracy, which can provide a reference for selecting appropriate structural parameters to meet the requirements of dynamics during the preliminary design.

TripleDiff: an Incremental Update Algorithm on RDF Documents in Triple Stores (TripleDiff: 트리플 저장소에서 RDF 문서에 대한 점진적 갱신 알고리즘)

  • Lee, Tae-Whi;Kim, Ki-Sung;Yoo, Sang-Won;Kim, Hyoung-Joo
    • Journal of KIISE:Databases
    • /
    • v.33 no.5
    • /
    • pp.476-485
    • /
    • 2006
  • The Resource Description Framework(RDF), which emerged with the semantic web, is settling down as a standard for representing information about the resources in the World Wide Web Hence, a lot of research on storing and query processing RDF documents has been done and several RDF storage systems, such as Sesame and Jena, have been developed. But the research on updating RDF documents is still insufficient. When a RDF document is changed, data in the RDF triple store also needs to be updated. However, current RDF triple stores don't support incremental update. So updating can be peformed only by deleting the old version and then storing the new document. This updating method is very inefficient because RDF documents are steadily updated. Furthermore, it makes worse when several RDF documents are stored in the same database. In this paper, we propose an incremental update algorithm on RDF, documents in triple stores. We use a text matching technique for two versions of a RDF document and compensate for the text matching result to find the right target triples to be updated. We show that our approach efficiently update RDF documents through experiments with real-life RDF datasets.

Secure Steganography Based on Triple-A Algorithm and Hangul-jamo (Triple-A 알고리즘과 한글자모를 기반한 안전한 스테가노그래피)

  • Ji, Seon-Su
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.5
    • /
    • pp.507-513
    • /
    • 2018
  • Steganography is a technique that uses hidden messages to prevent anyone apart from knowing the existence of a secret message, except the sender and trusted recipients. This paper applies 24 bit color image as cover medium. And a 24-bit color image has three components corresponding to red, green and blue. This paper proposes an image steganography method that uses Triple-A algorithm to hide the secret (Hangul) message by arbitrarily selecting the number of LSB bits and the color channel to be used. This paper divides the secret character into the chosung, jungsung and jongsung, and applies crossover, encryption and arbitrary insertion positions to enhance robustness and confidentiality. Experimental results of the proposed method show that insertion capacity and correlation are excellent and acceptable image quality level. Also, considering the image quality, it was confirmed that the size of LSB should be less than 2.

Low-Complexity Triple-Error-Correcting Parallel BCH Decoder

  • Yeon, Jaewoong;Yang, Seung-Jun;Kim, Cheolho;Lee, Hanho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.5
    • /
    • pp.465-472
    • /
    • 2013
  • This paper presents a low-complexity triple-error-correcting parallel Bose-Chaudhuri-Hocquenghem (BCH) decoder architecture and its efficient design techniques. A novel modified step-by-step (m-SBS) decoding algorithm, which significantly reduces computational complexity, is proposed for the parallel BCH decoder. In addition, a determinant calculator and a error locator are proposed to reduce hardware complexity. Specifically, a sharing syndrome factor calculator and a self-error detection scheme are proposed. The multi-channel multi-parallel BCH decoder using the proposed m-SBS algorithm and design techniques have considerably less hardware complexity and latency than those using a conventional algorithms. For a 16-channel 4-parallel (1020, 990) BCH decoder over GF($2^{12}$), the proposed design can lead to a reduction in complexity of at least 23 % compared to conventional architecttures.

Triple-mode Blind Equalization Algorithm for QAM Demodulation (QAM 복조용 삼중 모드 채널 등화 알고리즘)

  • Wui, Jung-Hwa;Hwang, Hu-Mor
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3138-3140
    • /
    • 1999
  • We propose a robust blind equalization algorithm based on dual-mode algorithm which incorporates a stop-and-go technique. The constant modulus algorithm(CMA) exhibits very slow convergence when applied to QAM signals and generates phase error. We show that convergence properties of the dual-mode MCMA can be significantly improved by simply adding a stop-and-go technique. To speed up the convergence rate, the TMA-MCMA operates in triple mode that is based on the dual-mode of the MCMA incorporated with the tap-updating control modes of the SGA.

  • PDF

An Efficient Encryption Technique for Cloud-Computing in Mobile Environments (모바일환경에서 클라우드 컴퓨팅 보안을 위한 효율적인 암호화기술)

  • Hwang, Jae-Young;Choi, Dong-Wook;Chung, Yeon-Ho
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.4
    • /
    • pp.298-302
    • /
    • 2011
  • In this paper, we propose an efficient encryption algorithm for ensuring data privacy and security for cloud computing in mobile environments. As part of the evaluation of the proposed algorithm, we have implemented the algorithm in a PC environment and compared with the well-known encryption algorithm of the Data Encryption Standard (DES). The conventional DES algorithm is hard to maintain privacy, due to the fact that its initial and final permutation are known to the network To prevent this critical weakness, a triple DES algorithm has been reported, but it has a disadvantage of long encryption time. In this study, we propose random interleaving algorithm that uses the permutation table for improving privacy further. The proposed algorithm is found to run faster than the triple DES algorithm and also offers improved security in a wireless communication system.