• 제목/요약/키워드: Triphenylphosphine

검색결과 69건 처리시간 0.027초

Hydrodediazoniation of Arenediazonium Tetrafluoroborate with Triethylamine

  • 박군하;조윤환;장은주
    • Bulletin of the Korean Chemical Society
    • /
    • 제17권2호
    • /
    • pp.179-182
    • /
    • 1996
  • Hydrodediazoniation product (3a-d) was found to be the major product in the reaction of arenediazonium tetrafluoroborate (1a-d) with triethylamine (2) in methanol under nitrogen at room temperature. A quantitative study on the title reaction was investigated in detail and two remarks were noteworthy. One was the linear increase in the yield of 3a-d by increasing the molar concentration of 2 until equimolar concentration was reached between 1a-d and 2. The other was the suppression of the formation of 3a-d in the presence of oxygen. Based on these results, the title reaction was better understood by 1:1 electron transfer reaction between reactants (1a-d and 2) rather than by radical chain mechanism proposed in the reaction of arenediazonium tetrafluoroborate and triphenylphosphine.

Evidence for Nitrogen-Bonded Acrylonitrile to Iridium (Ⅰ) in Acrylonitrilecarbonylbis(triphenylphosphine)iridium (Ⅰ) perchlorate

  • Park, Soon-Heum;Park, Hwa-Kun;Chin, Chong-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • 제5권4호
    • /
    • pp.167-169
    • /
    • 1984
  • Analyses of $_1$H-NMR, infrared and electronic spectral data for $[Ir(CH_2 = CHCN)(CO)(P(C_6H_5)_3)_2]ClO_4 (1)$prepared by the reaction of $Ir(OClO_3)(CO)(P(C_6H_5)_3)_2$ with $CH_2 = CHCN$, agree with the suggestion that 1 is a mixture of the nitrogen-bonded acrylonitrile complex, $[(CO)(P(C_6H_5)_3)_2Ir-NCCH = CH_2]ClO_4$ and other compound which may be the C = C ${\Pi}$ -system-bonded acrylonitrile complex, "[(CO)(P(C6H5)3)2Ir-CHCN = CH2]ClO4.

Homogeneous Catalysis (IV). Hydrogenation of Acrylonitrile with trans-Chlorocarbonylbis(triphenylphosphine)rhodium(I)

  • Woo, Jin-Chun;Chin, Chong-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • 제4권4호
    • /
    • pp.169-171
    • /
    • 1983
  • It has been found that the acrylonitrile solution of trans-$RhCl(CO)(Ph_3P)_2$ produces propionitrile catalytically at $90^{\circ}C$ under $P_{H_2}$=3 atm. This catalytic hydrogenation proceeds only for a certain period of time producing ca. 50 moles of propionitrile per mole of the rhodium complex. The hydrogenation with trans-$RhCl(CO)(Ph_3P)_2$ in the presence of formaldehyde is much faster than in the absence of formaldehyde, and continues without a decrease in the rate for a prolonged period of time. It is suggested that the hydrogenation with trans-$RhCl(CO)(Ph_3P)_2$ proceeds through the unsaturated route initiated by the dissociation of CO from trans- $RhCl(CO)(Ph_3P)_2$ to give coordinatively unsaturated $RhCl(Ph_3P)_2$.

질소, 산소, 인 주개 리간드를 갖는 몰리브덴 (Ⅲ) 및 (Ⅳ) 착물의 합성과 특성 (제 3 보) (Synthesis and Characterization of Molybdenum(Ⅲ) and (Ⅳ) Complexes with N, P, O-Donating Ligands(Ⅲ))

  • 김은기;유은영;박유철
    • 대한화학회지
    • /
    • 제38권2호
    • /
    • pp.101-107
    • /
    • 1994
  • $MoCl_4(MeCN)_2$과 N, P, O주개 리간드를 반응시켜 새로운 몰리브덴(Ⅲ) 및 (Ⅳ)착물을 합성하였으며 원소분석과 적외선 및 전자 흡수스펙트럼 등을 이용하여 그 특성을 조사하였다. 사용한 리간드는 3,5-Lutidine, 1,2-phenylenediamine, 8-hydroxyquinoline, 9,10-phenanthrenequinone, triphenylphosphine 과 1,2-bis(diphenylphosphino)ethane이다. 합성된 몰리브덴(Ⅳ) 착물의 Mo-Cl 신축진동은 몰리브덴(Ⅲ)착물보다 증가한 영역에서 나타나므로, M-Cl 신축진동의 위치는 금속의 산화수에 비례한다는 사실과 잘 일치한다. 한자리 리간드의 착물에서는 Mo-Cl신축진동에 의해 강한 한 개의 흡수띠가 나타나는 반면, 두자리 리간드의 착물에서는 강한 네 개의 흡수띠가 나타나므로 이들 각각 trans($D_{4h}$)및 cis($C_{2v}$) 대칭임을 알 수 있다. 몰리브덴(Ⅲ)착물에서 acetonitrile의 C≡N 신축진동은 자유 리간드(2260 $cm^{-1}$)보다 약 30 $cm^{-1}$ 증가한 위치에서 나타나므로 이들 착물은 acetonitrile이 배위된 것을 알 수 있다. 이상의 분광학적 분석 결과를 종합해 보았을 때 $[MoCl_4(L)_2]$,[Mo$Cl_4$(L^L)], $[MoCl_3(L)_2MeCN]$ 및 [Mo$Cl_3$(L^L)MeCN]과 같은 팔면체 구조의 착물임을 알 수 있었다.

  • PDF

질소, 산소, 인 주개 리간드를 갖는 바나듐(Ⅲ) 착물의 합성과 특성 (제 2 보) (Synthesis and Characterization of Vanadium(Ⅲ) Complexes with N, P, O-donating Ligands(Ⅱ))

  • 오상오;류은영
    • 대한화학회지
    • /
    • 제37권6호
    • /
    • pp.612-617
    • /
    • 1993
  • VC$l_3$과 N, P, O 주개 리간드를 반응시켜 새로운 바나듐(Ⅲ) 착물을 합성하였으며 원소분석과 적외선, 핵자기 공명 및 전자 흡수스펙트럼 등을 이용하여 그 특성을 조사하였다. 사용한 리간드는 3,5-Lutidine, 1,2-phenylenediamine, 8-hydroxyquinoline, 9,10-phenanthrenequinone, triphenylphosphine, 1,2-bis(diphenylphosphino)ethane, 1,3-bis(diphenylphosphino)propane 과 1,1'-bis(diphenylphosphino)ferrocene이다. 합성된 착물의 V-Cl 신축진동이 298~367 c$m^{-1}$에서 나타나므로 팔면체 구조로 추정된다. V-X(X=N, P, O) 신축진동이 200~600 cm-1에서 각각 관측되므로 바나듐에 리간드가 배위도니 것을 알 수 있다. Acetonitile의 C≡N 신축진동은 자유리간드(2260 cm-1)보다 약 70 c$m^{-1}$ 증가한 위치에서 나타나며, 또한 C≡N 굽힘진동도 자유리간드(377 c$m^{-1}$)보다 약 60 c$m^{-1}$ 증가한 위치에서 나타난다. 이러한 결과에 따라 [VC$l_3$(L$_2$)MeCN] 및 [VC$l_3$(L-L)MeCN]와 같은 팔면체 구조의 바나듐(Ⅲ) 착물임을 알 수 있었다.

  • PDF

Ligand Effect in Recycled CNT-Pd Heterogeneous Catalyst for Decarboxylative Coupling Reactions

  • Kim, Ji Dang;Pyo, Ayoung;Park, Kyungho;Kim, Gwui Cheol;Lee, Sunwoo;Choi, Hyun Chul
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권7호
    • /
    • pp.2099-2104
    • /
    • 2013
  • We present here an efficient and simple method for preparation of highly active Pd heterogeneous catalyst (CNT-Pd), specifically by reaction of dichlorobis(triphenylphosphine)palladium ($Pd(PPh_3)_2Cl_2$) with thiolated carbon nanotubes (CNTs). The as-prepared CNT-Pd catalysts demonstrated an excellent catalytic activity for the carbon-carbon (C-C) cross-coupling reactions (i.e. Suzuki, Stille, and decarboxylative coupling reactions) under mild conditions. The CNT-Pd catalyst could easily be removed from the reaction mixture; additionally, in the decarboxylative coupling of iodobenzene and phenylpropiolic acid, it showed a six-times recyclability, with no loss of activity. Moreover, once its activity had decreased by repeated recycling, it could easily be reactivated by the addition of phosphine ligands. The remarkable recyclability of the decarboxylative coupling reaction is attributable to the high degree of dispersion of Pd catalysts in CNTs. Aggregation of the Pd catalysts is inhibited by their strong adhesion to the thiolated CNTs during the chemical reactions, thereby permitting their recycling.

재활용 메타 아라미드와 TPP 복합용액의 제조 및 면섬유 코팅 후 특성분석 (Characteristics of Recycled m-Aramid and TPP Complex Solutions in Preparation and Cotton Fibers after Coating)

  • 김삼수;이지민;조호현;류규열
    • 한국염색가공학회지
    • /
    • 제25권4호
    • /
    • pp.292-302
    • /
    • 2013
  • Cotton fabrics treated with hybrid materials were developed and prepared. A halogen-free flame retardant and an aromatic amide were blended and applied to cotton fabrics. Thermal and physical properties of the treated cotton fabrics were investigated. The surface of the pure and coated cotton fabrics was characterized by Fourier transform infrared spectroscopy. The elemental composition of the coated surface of the cotton fabric was measured using X-ray photoelectron spectroscopy and compared with that of pure cotton fabric. After being solved in N,N-dimethylacetamide, m-aramid and triphenylphosphine oxide (TPP) were applied to cotton fabrics through a dip-pad-coagulation process. The treated cotton fabrics with recycled m-aramid/TPP resulted in increased limited oxygen index values and thermal resistance.

(tb-PMP)3Tb-(Ph3PO) 단일층 OLEDs의 전기전도 및 발광 특성 (Electrical Conduction and Emission Properties of (tb-PMP)3Tb-(Ph3PO) Single Layer OLEDs)

  • 문대규
    • 한국전기전자재료학회논문지
    • /
    • 제19권9호
    • /
    • pp.878-882
    • /
    • 2006
  • We have fabricated single organic layer devices of the organolanthanide complex, terbium tris-(1-phenyl-3-methyl-4-(tertiarybutyry)pyrazol-5-one)triphenylphosphine oxide [$(tb-PMP)_{3}Tb-(Ph_{3}PO)$] for the investigation of its light emission and electrical conduction properties. The thickness of ($(tb-PMP)_{3}Tb-(Ph_{3}PO)$) layer was varied to 60, 75, 95 nm. Mg and Ca layers were used for the cathode contact. The electrical conduction in the $(tb-PMP)_{3}Tb-(Ph_{3}PO)$ single layer devices was dominated by the injection of electrons into the organic layer from the cathode. A higher current density at much lower voltages can be attained with Ca cathode because of the enhanced electron injection. The device shows very sharp emission at 548 nm. The FWHM of the strongest emission peak was 12 nm.

에폭시 접착제의 경화거동 및 접합강도에 미치는 경화촉매제의 영향 (Effect of Curing Agent on the Curing Behavior and Joint Strength of Epoxy Adhesive)

  • 김민수;김해연;유세훈;김종훈;김준기
    • Journal of Welding and Joining
    • /
    • 제29권4호
    • /
    • pp.54-60
    • /
    • 2011
  • Adhesive bonding is one of the most promising joining methods which may substitute for conventional metallurgical joining processes, such as welding, brazing and soldering. Curing behavior and mechanical properties of adhesive joint are largely dependent on the curing agent including hardener and catalyst. In this study, effects of curing system on the curing behavior and single-lap shear strength of epoxy adhesive joint are investigated. Dihydrazide, anhydride and dicyandiamide(DICY) were chosen as hardener and imidazole and triphenylphosphine(TPP) were chosen as catalyst. In curing behavior, TPP showed the delay of the curing rate for DICY and ADH at $160^{\circ}C$, compared to imidazole catalyst due to the high curing onset/peak temperature. DICY seemed to be most beneficial in the joint strength for both steel and Al adherends, although the type of adherends affected the shear strength of epoxy adhesive joint.

Synthesis and Catalytic Activity of Water-Soluble Iridium-Sulfonated Triphenylphosphine Com;lex. Hydration of Nitriles

  • 진종식;김상열;주광석;원경식;종대성
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권5호
    • /
    • pp.535-538
    • /
    • 1999
  • Five coordinated water-soluble iridium(l) complex, IrH(CO)(TPPTS)3 (1) (TPPTS = P(m-C6H4SO3Na)3-xH2O) has been prepared from the reaction of IrCl3·3H2O with TPPTS and HCHO in H2O/EtOH solution. Complex 1 catalyzes the hydration of nitrites (RC ≡ N, R = CH3, CICH2, CH3(CH2)4, Ph) in aqueous solution to give the corresponding amides (RCONH2) at 100℃. The hydration of unsaturated nitrites (R'C ≡ N, R'=CH3CH=CH, CH3OCH=CH, trans-PhCH=CH, CH2=C(CH3)) takes place regioselectively on-C ≡ N group to give unsaturated amides (R'CONH2) leaving the olefinic group intact. The yields of the amides seem to be depending on the electrophilicity of the carbon of nitrile: The more the electron withdrawing ability of the substituents on nitrites, the more amides are obtained. The hydration of dinitriles (NC-R-CN, R=(CH2)4, (CH2)6) with complex 1 initially gives mono-hydration products (NC-R-CONH2) which are slowly hydrated further to give dihydration products (H2NCO-R-CONH2). The hydration of 1,4-dicyanobutane has been found to be somewhat faster than that of 1,6-dicyanohexane.