Synthesis and Catalytic Activity of Water-Soluble Iridium-Sulfonated Triphenylphosphine Complex. Hydration of Nitriles

Chong Shik Chin,* Sang Yull Kim, Kwang-Suk Joo, Gyongshik Won, and Daesung Chong

Department of Chemistry, Sogang University, Mapoku, Seoul 121-742, Korea Received January 15, 1999

Five coordinated water-soluble iridium(I) complex, IrH(CO)(TPPTS)₃ (1) (TPPTS = P(m-C₆H₄SO₃Na)₃·xH₂O) has been prepared from the reaction of IrCl₃·3H₂O with TPPTS and HCHO in H₂O/EtOH solution. Complex 1 catalyzes the hydration of nitriles (RC \equiv N, R = CH₃, ClCH₂, CH₃(CH₂)₄, Ph) in aqueous solution to give the corresponding amides (RCONH₂) at 100 °C. The hydration of unsaturated nitriles (R'C \equiv N, R' = CH₃ClCH=CH, CH₃OCH=CH, *trans*-PhCH=CH, CH₂=C(CH₃)) takes place regioselectively on -C \equiv N group to give unsaturated amides (R'CONH₂) leaving the olefinic group intact. The yields of the amides seem to be depending on the electrophilicity of the carbon of nitrile: The more the electron withdrawing ability of the substituents on nitriles, the more amides are obtained. The hydration of dinitriles (NC-R-CN, R = (CH₂)₄, (CH₂)₆) with complex 1 initially gives mono-hydration products (NC-R-CONH₂) which are slowly hydrated further to give di-hydration products (H₂NCO-R-CONH₂). The hydration of 1,4-dicyanobutane has been found to be somewhat faster than that of 1,6-dicyanohexane.

Introduction

Unsaturated amides are very useful compounds1 since their polymers are used in various chemical industries such as paper and surfactant production,² waste water treatment and oil recovery.3 Amides are in general prepared by hydration of nitriles in the presence of strong acid or base catalyst.⁴ Under these conditions, amides are further hydrolyzed to give carboxylic acids,⁵ and hydrolysis of other functional groups of unsaturated nitriles (*e.g.*, olefinic group) also takes place. Transition metal complexes have been successfully utilized as catalysts in order to obtain the catalytic hydration of nitriles in the absence of strong acid or base as well as the regioselective hydration of unsaturated nirtriles.⁶ To the best of our knowledge, no report has been made for catalytic hydration of nitriles with a water-soluble metal complex although there are some advantages for using water-soluble metal complexes as catalysts for hydration in aqueous solutions.

We recently found that water-soluble complexes, RhCl $(CO)(TPPTS)_2$ and $IrCl(CO)(TPPTS)_2$ (TPPTS = P(m-C₆H₄SO₃Na)₃·xH₂O) are efficient catalysts for the hydration of terminal alkynes to produce corresponding ketones⁷ and polymerization of terminal alkynes to give stereoselective polymers of alkynes⁸ in aqueous solutions. We now wish to report the catalytic hydration of nitriles to the corresponding amides by a five coordinated water-soluble Ir(I) complex, IrH(CO)(TPPTS)₃ (1). This report also includes a more convenient synthetic method for complex 1 than the method reported previously.⁹

Results and Discussion

Synthesis of Water-Soluble $IrH(CO)(TPPTS)_3$ (1) (TPPTS = P(m-C₆H₄SO₃Na)₃·xH₂O). This complex was previously prepared by refluxing IrH(CO)(PPh₃)₃ in the presence of TPPTS in toluene/water biphasic solution for 5 days.⁹ In the course of looking for the synthetic method of **1** with shorter reaction time and higher yield, we found that complex 1 can be prepared directly from the reaction of IrCl₃·3H₂O, TPPTS and HCHO/NaOH in refluxing H₂O/EtOH for 20 hours (see eq 1 and Experimental). Complex 1 has been characterized by spectral data (¹H NMR, ³¹P NMR and IR) which are in good agreement with those previously reported⁹ (see Experimental).

$$\frac{\text{IrCl}_{3}\cdot 3\text{H}_{2}\text{O} + 3\text{TPPTS} + \text{HCHO/NaOH}}{\frac{\text{H}_{2}\text{O/EtOH}}{\text{reflux/20 h}}} \quad \text{IrH(CO)(TPPTS)_{3}}$$
(1)

Catalytic Hydration of Nitriles. Nitriles readily undergo hydration to give corresponding amides in the presence of **1** at 100 °C under N₂ in aqueous solution (eq 2). The waterinsoluble iridium analog IrH(CO)(PPh₃)₃ shows no catalytic activity for the hydration of nitriles in CHCl₃/H₂O solution under reflux condition. The hydration of nitriles does not occur in the presence of TPPTS and/or *conc.* H₂SO₄ only (*i. e.*, in the absence of **1**). In the presence of NaOH, it occurs very slowly with no regioselectivity in cases of unsaturated nitriles.

$$\mathbf{RC} \equiv \mathbf{N} \quad \xrightarrow{\mathrm{IrH}(\mathrm{CO})(\mathrm{TPPTS})_3}_{\mathrm{H}_2\mathrm{O}, 100\,^{\circ}\mathrm{C}} \quad \mathbf{RCONH}_2$$
(2)

The hydration of chloroacetonitrile (ClCH₂CN) is found to be faster than that of other nitriles such as CH₃CN and CH₃(CH₂)₄CN (see Table 1). This may be understood in terms of the enhancement of the electrophilicity of the nitrile carbon by the substituent.^{6c,10} The electron withdrawing effect of the substituents increases in the order of CH₃(CH₂)₄ < CH₃ < CH₂Cl, which predicts easier nucleophlic attack by

536 Bull. Korean Chem. Soc. 1999, Vol. 20, No. 5

Table 1. Hydration of Nitriles (3.0 mmol) in the Presence of $IrH(CO)(TPPTS)_3$, 1 (0.05 mmol) in Aqueous Solution at 100 °C for 4 h under N₂

nitrile	product	yield
indite	Freezer	$(\mathcal{M})^d$
CH ₃ CN	CH ₃ CONH ₂	38
CH ₃ (CH ₂) ₄ CN	CH ₃ (CH ₂) ₄ CONH ₂	35
C ₆ H ₅ CN	C ₆ H ₅ CONH ₂	54°
CICH ₂ CN	CICH ₂ CONH ₂	73
CH3CH=CHCN (65:35)"	CH ₃ CH=CHCONH ₂ (31:69)"	65
CH3OCH=CHCN (37:63)*	CH ₃ OCH=CHCONH ₂ (22:78) ^a	31
CH ₃ CH ₂ OCH=CHCN (37:63) ⁽⁴⁾	CH ₃ CH ₂ OCH=CHCONH ₂ (25:75) ^a	29
trans-C ₆ H ₅ CH=CHCN	trans-C ₆ H ₅ CH=CHCONH ₂	96
CH ₂ =C(CH ₃)CN	CH ₂ =C(CH ₃)CONH ₂	54
HCC(CH ₂) ₃ CN	alkyne oligomers ^c	nd∕
NC(CH ₂) ₄ CN	NC(CH ₂) ₄ CONH ₂	47
	H2NCO(CH2)4CONH2	53
NC(CH ₂) ₆ CN	NC(CH ₂) ₆ CONH ₂	48
	H2NCO(CH2)6CONH2	25
NCCH=CHCN	no reaction	0
NC-C ₆ H ₄ -CN	no reaction	0
NC(CH ₂) ₄ CONH ₂ ^b	H2NCO(CH2)4CONH2	89ª
NC(CH ₂) ₆ CONH ₂ ^b	H ₂ NCO(CH ₂) ₆ CONH ₂	81°

^aThe ratio of the isomers; *cis:trans.* ^b1.5 mmol of the substrate was used (nitrile/Ir = 30). ^cIdentified by GC/mass. ^aMeasured by ¹H NMR (D₂O, 25 °C, 300 MHz). ^cWeight % after isolation. Not determined.

 H_2O on the carbon of ClCH₂*C*N than that of other nitriles. The same effect has been also observed for the rate of hydration of unsaturated nitriles. Higher rate of hydration is observed for C₆H₅CH=CHCN than for CH₃CH=CHCN and CH₂=C(CH₃)CN (see Table 1). That relatively lower hydration rates are measured for CH₃OCH=CHCN and C₂H₅OCH=CHCN may be explained by the resonance structure **B** (see eq 3) which decreases the electrophilicity of the carbon of the nitriles.

$$RO - CH = CH - CN \leftrightarrow R\dot{O} = CH - CH - CN$$
 (3)
A B

It is surprising to find that complex 1 shows no catalytic activity for the hydration of unsaturated nitriles such as $CH_2=CHCN$, $CH_2=CHCH(CH_3)CN$, $CH_2=CCICN$, $BrCH=C(CH_3)CN$ and $CH_2=CHCH_2CN$ for which no plausible explanation has been found thus far.

The hydration of a mixture of *cis*- and *trans*-CH₃CH= CHCN has been investigated in order to obtain more information on the effects of the olefinic group of the unsaturated nitriles. At the early stage of the catalysis, the *trans* isomer (*trans*-CH₃CH=CHCN) seems to undergoes the hydration faster than does the *cis*-isomer (*cis*-CH₃CH=CHCN) (see Table 2). At the later stage, the isomerization of the hydration product (*cis*-CH₃CH=CHCONH₂ to *trans*-CH₃CH=

Table 2. Hydration of CH₃CH=CHCN (3.0 mmol) in the Presence of IrH(CO)(TPPTS)₃, 1 (0.05 mmol) in Aqueous Solution at 100 °C under N₂

reaction	unreacted CH3CH=CHCN (%)°		CH ₃ CH=CHCONH ₂ (%) ^µ		yield
ume (n)	cis	trans	cis	trans	(%) ^e
0	65	35	0	0	0
2	38	9	23	30	53
4	27	8	20	45	65
6	7	2	45	46	91
8	7	2	42	49	91
10	7	2	33	58	91

"Determined by ¹H NMR (CDCl₃, 25 °C, 300 MHz). "Determined by ¹H NMR (D₂O, 25 °C, 300 MHz).

CHCONH₂) is clearly observed (see Table 2), which suggests significant interactions between the olefinic group of unsaturated amides and the catalyst 1. These interactions have been also observed in the reaction of CH₂=CHCH₂CN with catalyst 1: The hydration product was not detected in the reaction of CH₂=CHCH₂CN with 1 in aqueous solution at 100 °C for 4 h while a significant amount of the isomerization-hydration product, CH3CH=CHCONH2 has been observed after 24 h during which time neither CH2= CHCH₂CONH₂ nor CH₃CH=CHCN has been detected. This may be understood in terms of slow isomerization of CH2=CHCH2CN (to CH3CH=CHCN) followed by fast hydration of the nitrile group to give CH₃CH=CHCONH₂ or slow hydration of CH₂=CHCH₂CN (to give CH₂=CHCH₂CONH₂) followed by fast isomerization to give CH₃CH=CHCONH₂. It may be mentioned here that the isomerization of CH_2 =CHCH₂OH is fast enough to observe a simple enol, CH₃CH=CHOH in the presence of another water-soluble iridium(I) complex, [Ir(1,5-cyclooctadiene)(TPPTS)2]Cl in aqueous solution at 25 °C.11

Reaction of an acetylenic nitrile $HC \equiv C(CH_2)_3CN$ with complex 1 in aqueous solution gives no hydration product but oligomers which are characterized by mass (m/e = 186, 279) and IR ($v_{C=N}$, 2248 cm⁻¹) spectra. It has been found in a separate experiment that complex 1 is also catalytically active for the oligomerization of styrene in aqueous solution at 100 °C.¹²

Complex 1 also catalyzes the hydration of dinitriles such as NC(CH₂)₄CN and NC(CH₂)₆CN to give mono- and dihydration products, respectively at 100 °C while no hydration products have been detected from the reactions of NCCH=CHCN and *p*-NC-C₆H₄-CN (1,4-dicyanobenzene) (see Table 1). It seems possible to isolate significant amounts of mono-hydration products, NC(CH₂)₄CONH₂ (*ca.* 37%) and NC(CH₂)₆CONH₂ (*ca.* 24%) from the reaction mixtures (see Table 3). It is noticed that the first hydration is much faster for NC(CH₂)₄CN than for NC(CH₂)₆CN while the electrophilicity of the nitrile carbon (-*C*N) of both dinitriles may not be much different from each other. The difference in hydration rates may come from the fact that NC(CH₂)₄CN could readily chelate on metal through M-N bonds while it may cause a strain for NC(CH₂)₆CN to make chelate on metal.

Table 3. Hydration of Dinitriles (3.0 mmol) in the Presence of $IrH(CO)(TPPTS)_3$, 1 (0.05 mmol) in Aqueous Solution at 100 °C under N₂

substrate	reaction time (h)	unreacted dinitrile (%)"	mono-hydration product (%) ^b	di-hydration product (%) ^b
$NC(CH_2)_4CN$	0.5	63	37	0
	1	35	54	н
	4	0	47	53
	12	0	8	92
	24	0	0	100
$NC(CH_2)_6CN$	1	76	24	0
	2	41	41	18
	4	26	48	25
	24	0	0	100

"Determined by GC. "Weight % after isolation.

Metal Complex(es) During Catalysis. In order to obtain information on metal complexes during the catalytic cycle, metal complexes have been isolated from the catalytically active reaction mixtures. The isolated complex(es), C from the reaction of 1 with CH₃CH=CHCN after 4 h under the catalytic conditions gives more spectral information than any other solids isolated from reaction mixtures of 1 with other nitriles.

Infrared and ¹³C NMR spectra of the complex C show that it contains moieties of Ir-C=O and -CONH2 by showing strong absorptions at 1993 (Ir-C=O) and 1633 (-CONH₂) cm⁻¹ and signals at 187 (Ir-C≡O) and 172 (-CONH₂) ppm, respectively. ³¹P NMR data for C suggest the dissociation of TPPTS and oxidation of TPPTS during the catalysis: ³¹P NMR spectrum shows four signals at -5.13, -0.36 (d, J = 62Hz), 1.75 (d, J = 62 Hz) and 35.3 ppm. The signals at -5.13 and 35.3 ppm are due to free TPPTS and TPPTS-oxide $(O=P(m-C_6H_4SO_3Na)_3 \cdot xH_2O)$, respectively. The two doublets at -0.36 and 1.75 ppm seem due to the TPPTS remained in the coordination sphere. Complex C is also obtained in the reaction of complex 1 with excess CH₃CH=CHCONH₂ in aqueous solution at 100 °C. Reaction of C with excess TPPTS under CO (100 psi) in aqueous solution at 70 °C gives complex 1 and CH3CH=CHCONH2. Stirring aqueous solution of C at room temperature produces CH₃CH= CHCONH₂ and unidentifed iridium complex(es). Complex (es) \mathbf{C} could be a mixture of more than one iridium complex and is currently under investigation for further characterization.

Experimental Section

General Information. The NMR spectra were measured on a Varian Gemini 300 MHz for ¹H, 75.4 MHz for ¹³C and 121.3 MHz for ³¹P. Electronic absorption and infrared spectra were obtained by Shimadzu UV-240 and Shimadzu IR-440 and/or Nicolet 205 spectrophotometers. Gas chromatographs and mass spectra were obtained by Varian 3700 and Hewlett Packard HP5890A at Organic Chemistry Research Center, Sogang University.

All chemicals were purchased reagent grade from Aldrich and used without further purification. TPPTS was prepared by the literature method.7

Synthesis of IrH(CO)(TPPTS)₃ (1). A reaction mixture of IrCl₃·3H₂O (0.2 mmol, 70 mg) and TPPTS (0.6 mmol, 374 mg) in H₂O (4 mL) and EtOH (10 mL) was refluxed for 1 h before NaOH (114 mg) in H₂O (2 mL) and HCHO (4 mL, 37% H₂O) were added to the yellow solution. The reaction mixture was refluxed for further 19 h and cooled down to room temperature. Addition of EtOH (80 mL) to the reaction mixture resulted in precipitation of the yellow product of 1, which was filtered and washed with EtOH (60 mL) and Et₂O (20 mL). This crude product was recrystallized using H_2O (1 mL) and EtOH (30 mL). The yield was 0.38 g (0.18 mmol, 90 %). ¹H NMR (D₂O, 25 °C): δ -10.6 (q, 1H, J_{H-P} = 21.3 Hz, Ir-H, lit.⁹ -10.6). ³¹P NMR (D₂O, 25 °C): δ 18.6 (s, 3P, Ir-P, lit.⁹ 19.2). IR (KBr, cm⁻¹) 2084 (v_{Ir-H}, lit.⁹ 2128), 1935 (v_{CO}, lit.⁹ 1927). Electronic absorption (H₂O, 25 °C): $\lambda_{\rm max}$ (nm) 322.

Catalytic Hydration of Nitriles. All catalytic reactions were carried out practically in the same manner as described below. A reaction mixture of $IrH(CO)(TPPTS)_3$ (1) (0.1 g, 0.05 mmol) and a nitrile (3.00 mmol) in H₂O (5 mL) was stirred for 4 h at 100 °C under N₂ and cooled down to room temperature before the solvent and unreacted nitrile were removed by vacuum distillation to obtain yellowish residue. Amide was extracted from the residue twice with acetone (30, 20 mL) that was removed by vacuum distillation. The white solid (amide) was characterized by ¹H NMR (CDCl₃, 25 °C), infrared (KBr) and GC/mass spectra.

Only mass spectral (MS) data are given for those amides $(CH_3CONH_2, CH_3(CH_2)_4CONH_2, C_6H_5CONH_2, ClCH_2CONH_2, trans-C_6H_5CH=CHCONH_2, and CH_2=CH(CH_3)CONH_2)$ whose ¹H NMR data are available in "*The Aldrich Library of* ¹³C and ¹H NMR spectra", 1st ed., Aldrich Chem. Co., 1993 (edited by Pouchant).

CH₃CONH₂: MS: 59 ((M)⁺). CH₃(CH₂)₄CONH₂: MS: 116 $((M+1)^{+})$. C₆H₅CONH₂: MS: 121 $((M)^{+})$. ClCH₂CONH₂: MS: 93 ((M)⁺). cis-CH₃CH=CHCONH₂: ¹H NMR: δ 2.1 (dd, 3H, $J_{\text{H-H}} = 7.2$ Hz and $J_{\text{H-H}} = 1.8$ Hz, CH_3), 5.7 (br, 2H, NH_2), 5.8 (dd, 1H, J_{H-H} = 11.4 Hz and J_{H-H} = 1.8 Hz, CHCO), 6.1-6.2 (m, 1H, CH₃CH). IR: 1617 (s. ρ_{N-H}), 1678 (s. $\nu_{C=0}$), 3201, 3394 (m, ρ_{N-H}). MS: 85 ((M)⁺). trans-CH₃CH= CHCONH₂: ¹H NMR: δ 1.9 (dd, 3H, $J_{H-H} = 6.9$ Hz and J_{H-H} = 1.8 Hz, CH_3), 5.5 (br, 2H, NH_2), 5.9 (dd, 1H, J_{H-H} = 15.6 Hz and $J_{H-H} = 1.8$ Hz, CHCO), 6.8-6.9 (m, 1H, CH₃CH). IR: 1617 (s, v_{N-H}), 1678 (s, v_{C=O}), 3201, 3394 (m, v_{N-H}), MS: 85 ((M)⁺). cis-CH₃OCH=CHCONH₂: ¹H NMR: δ 3.9 (s, 3H, $CH_{3}O$), 4.9 (d. 1H, $J_{H-H} = 10.9$ Hz, CHCO), 5.4 (br, 2H, NH₂), 6.5 (d, 1H, $J_{\text{H-H}} = 10.9$ Hz, OCH). MS: 101 ((M)⁺). trans-CH₃OCH=CHCONH₂: ¹H NMR: δ 3.7 (s. 3H, CH₃O), 5.2 (d, 1H, J_{H-H} = 21.8 Hz, CHCO), 5.4 (br. 2H, NH₂), 7.6 (d, 1H, $J_{H-H} = 21.8$ Hz, OCH). MS: 101 ((M)⁺). cis-C₂H₅OCH=CHCONH₂: ¹H NMR: δ 1.4 (t, 3H, J_{H-H} = 6.9 Hz, CH_3C), 4.0 (q, 2H, $J_{H-H} = 6.9$ Hz, CH_2O), 5.0 (d, 1H, $J_{\text{H-H}} = 6.9 \text{ Hz}, \text{ CHCO}$, 5.4 (br, 2H, NH₂), 6.5 (d, 1H, $J_{\text{H-H}} =$ 6.9 Hz, OCH). MS: 115 ((M)⁺). trans-C₂H₅OCH= CHCONH₂: ¹H NMR: δ 1.3 (t, 3H, $J_{H-H} = 6.9$ Hz, CH_3C), 3.9 (q, 2H, $J_{\text{H-H}}$ = 6.9 Hz, CH_2 O), 5.2 (d, 1H, $J_{\text{H-H}}$ = 12.0 Hz,

OCH), 5.4 (br, 2H, NH₂), 7.5 (d, 1H, $J_{H-H} = 12.0$ Hz, CHCO). MS: 115 ((M)*). *trans*-C₆H₅CH=CHCONH₂: MS: 147 ((M)*). CH₂= CH(CH₃)CONH₂: MS: 85 ((M)*).

Catalytic Hydration of Dinitriles. All catalytic reactions with dinitriles were carried out in the same manner as described below. A reaction mixture of IrH(CO)(TPPTS)₃ (1) (0.1 g, 0.05 mmol) and a dinitrile (3.00 mmol) in H_2O (5 mL) was refluxed for 4 h, and cooled down to room temperature under N2 before the solvent was removed by vacuum distillation. Unreacted dinitrile and mono-hydration product (NC-R-CONH₂) were extracted from the residue twice with acetone (30, 20 mL), which was reduced to 2 mL by vacuum distillation. Addition of n-hexane (50 mL) resulted in precipitation of white mono-hydration product which was obtained by filtration, washed with n-hexane (50 mL), and dried under vacuum. The residue (mixture of unknown iridium complex and di-hydration product, H₂NCO-R-CONH₂) was washed three times with H₂O (20 mL) to obtain the waterinsoluble white di-hydration product. The products, monoand di-hydration products were characterized by ¹H NMR (CDCl₃, 25 °C), infrared (KBr) and GC/mass spectra. NC(CH₂)₄CONH₂: ¹H NMR: δ 1.7-1.8 (m, 4H, (CH₂)₂), 2.3 (t, 2H, $J_{\text{H-H}} = 6.3$ Hz, CH_2CN), 2.4 (t, 2H, $J_{\text{H-H}} = 6.9$ Hz, CH₂CO), 5.7 (br, 2H, NH₂)). ¹³C NMR (CDCl₃, 25 °C): δ 23.1, 30.9, 31.2, 41.1, 128.6 (CN), 186.2 (C=O). IR: 1622 (m, $\rho_{\text{N-H}}$), 1683 (s, $v_{\text{C=O}}$), 2248 (m, $v_{\text{C=N}}$), 3216, 3420 (s, ρ_{N·H}), MS: 127 ((M+1)⁺), NH₂CO(CH₂)₄CONH₂: IR: 1653 (s, $v_{C=0}$), 3180, 3379 (s, v_{N-H}). MS: 144 ((M)⁺). NC(CH₂)₆-CONH₂: ¹H NMR: δ 1.3-1.5 (m, 4H, (CH₂)₂), 1.6-1.7 (m, 4H, $(CH_2)_2$), 2.2 (t, 2H, $J_{H-H} = 7.2$ Hz, CH_2CN), 2.3 (t, 2H, $J_{\text{H-H}} = 6.9 \text{ Hz}, \text{CH}_2\text{CO}$, 5.5 (br, 2H, NH₂). ¹³C NMR: δ 14.6, 22.7, 23.2, 25.7, 25.9, 33.3, 120.5 (CN), 178.6 (C=O). IR: 1648 (s, $v_{C=0}$), 2243 (m, $v_{C=N}$), 3196, 3389 (s, v_{N-H}). MS: 155 ((M+1)⁺). NH₂CO(CH₂)₆CONH₂: IR: 1648 (s, $v_{C=0}$). 3185, 3379 (s, v_{N-H}). MS 173 ((M+1)⁺).

Isolation of Metal Complexes. Catalysis was stopped by quenching the catalytically active reaction mixture to room temperature under N_2 . Yellowish solid was obtained by removing the unreacted nitrile and H_2O by vacuum distillation, washed with acetone, and dried under vacuum.

Acknowledgment. This paper was financially supported

by NON DIRECTED RESEARCH FUND, Korea Research Foundation, 1996.

References

- (a) Matsuda, F. Chemtech 1977, 7, 306. (b) Gaset, A.; Constant, G.; Kalck, P.; Villain, G. J. Mol. Catal. 1980, 7, 355. (c) Hayashi, H.; Nishi, H.; Watanabe, Y.; Okazaki, T. J. Catal. 1981, 69, 44.
- Casey, J. M. Pulp and Paper, 3rd ed.; Wiley-Interscience: New York, 1981; Vol. 3, p 1449.
- Casey, J. M. Pulp and Paper, 3rd ed.; Wiley-Interscience: New York, 1981; Vol. 2, p 1269.
- (a) Compagnon, P. L.; Miocque, M. Ann. Chim. 1970, 5, 11. (b) Hegedus, K. S.; Nade, L. G. Compendium or Organic Synthetic Methods; Wiely: New York. 1977. (c) March. J. Advanced Organic Chemistry, 4th ed.; Wiley-Interscience: New York, 1992; p 887, and references cited therein.
- 5. March. J. Advanced Organic Chemistry, 4th ed.; Wiley-Interscience: New York, 1992; p 383, and references cited therein
- (a) Jensen, C. M.; Trogler, W. C. J. Am. Chem. Soc. 1986, 108, 723. and references cited therein. (b) Ravindranathan, M.; Kalyanam, N.; Sivaram, S. J. Org. Chem. 1982. 47, 4812, and references cited therein. (c) Kaminskaia, N. V.; Kosti, N. M. J. Chem. Soc., Dalton Trans. 1996, 3677.
- Chin, C. S.; Chang, W.-T.; Yang, S.; Joo, K.-S. Bull. Korean Chem. Soc. 1997, 18, 324.
- Joo, K.-S.; Kim, S. Y.; Chin, C. S. Bull. Korean Chem. Soc. 1997, 18, 1296.
- Herrman, W. A.; Kellner, J.; Riepl, H. J. Organomet. Chem. 1990, 389, 103.
- (a) Wilgus, C. P.; Downing, S.; Molitor, E.; Bains, S.; Pagni, R. M.; Kabalka, G. W. *Tetrahedron Lett.* **1995**, *36*, 3469. (b) Wiberg, K. B. J. Am. Chem. Soc. **1955**, *77*, 2519.
- Unpublished results. For enol detection, see (a) Chin, C.
 S.; Park, J. Chem. Commun. 1987, 1214. (b) Chin, C. S.:
 Lee, S. Y.; Park, J.; Kim, S. J. Am. Chem. Soc. 1988, 110, 8244.
- 12. Unpublished results.