• Title/Summary/Keyword: Trip Logic

Search Result 21, Processing Time 0.023 seconds

The Configuration Method of trip logic for IEC 61850 based IED using XML (IEC 61850 기반 IED의 XML을 이용한 트립로직 구성)

  • Go, Chol-Jin;Jin, Yong-Woo;Kim, Kyong-Taek;Kim, Jin-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.315-316
    • /
    • 2006
  • As IEC 61850 based substation automation technology is emerging globally, there are many efforts to implement and apply this IEC 61850 standard to substation automation area. IEC 61850 based substation supports ethernet network, standard data model and SCL(substation Configuration Language), etc. These features can provide enough environment to make applied technology which can substitute the legacy relay trip logic configuration method(PLC or Local area reconstruction) to XML based configuration method. This paper suggests new IED trip logic configuration method. The XML based trip logic configuration method can be established using SCL technology And IED trip logic reconfiguration from remote center can be possible under ethernet based technology

  • PDF

DEVELOPMENT OF RPS TRIP LOGIC BASED ON PLD TECHNOLOGY

  • Choi, Jong-Gyun;Lee, Dong-Young
    • Nuclear Engineering and Technology
    • /
    • v.44 no.6
    • /
    • pp.697-708
    • /
    • 2012
  • The majority of instrumentation and control (I&C) systems in today's nuclear power plants (NPPs) are based on analog technology. Thus, most existing I&C systems now face obsolescence problems. Existing NPPs have difficulty in repairing and replacing devices and boards during maintenance because manufacturers no longer produce the analog devices and boards used in the implemented I&C systems. Therefore, existing NPPs are replacing the obsolete analog I&C systems with advanced digital systems. New NPPs are also adopting digital I&C systems because the economic efficiencies and usability of the systems are higher than the analog I&C systems. Digital I&C systems are based on two technologies: a microprocessor based system in which software programs manage the required functions and a programmable logic device (PLD) based system in which programmable logic devices, such as field programmable gate arrays, manage the required functions. PLD based systems provide higher levels of performance compared with microprocessor based systems because PLD systems can process the data in parallel while microprocessor based systems process the data sequentially. In this research, a bistable trip logic in a reactor protection system (RPS) was developed using very high speed integrated circuits hardware description language (VHDL), which is a hardware description language used in electronic design to describe the behavior of the digital system. Functional verifications were also performed in order to verify that the bistable trip logic was designed correctly and satisfied the required specifications. For the functional verification, a random testing technique was adopted to generate test inputs for the bistable trip logic.

A Study on the Enhancement of Westinghouse DNB Protection Logic

  • Na, Man-Gyun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.515-520
    • /
    • 1996
  • Since the conventional Westinghouse DNB (Departure from Nucleate Boiling) protection logic is implemented on analog circuits, the logic must be very simple. However, if the DNB protection logic is implemented in a digital processor, a little bit of complexity can be allowed to increase the thermal (or operation) margin. The Westinghouse OTΔT DNB protection logic heavily restricts the operation region by applying the same logic for a full range of pressure in order to maintain its simplicity. In this work, the different DNB protection logic is used for several regions of pressure. The proposed method is applied to Yonggwang 1&2 nuclear power plants and it is calculated that the improved OTΔT can have 5.07% percent more thermal margin than the conventional OTΔT trip logic.

  • PDF

The C Language Auto-generation of Reactor Trip Logic Caused by Steam Generator Water Level Using CASE Tools

  • Kim, Jang-Yeol;Lee, Jang-Soo
    • Nuclear Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.58-67
    • /
    • 1999
  • The purpose is to produce a model of nuclear reactor trip logic caused by the steam generator water level of Wolsong 2/3/4 unit through an activity chart and a statechart and to produce C language automatically using Statechart-based Formalism and Stalemate MAGNUM toolset suggested by David Harel Formalism. It was worth attempting auto-generation of C language though we manually made Software Requirement Specification(SRS) for safety-critical software using statechart-based formalism. Most of the phases of the software life-cycle except the software requirement specification of an analysis phase were generated automatically by Computer Aided Software Engineering (CASE) tools. It was verified that automatically produced C language has high productivity, portability, and quality through the simulation.

  • PDF

Study on the digitalization of trip equations including dynamic compensators for the Reactor Protection System in NPPs by using the FPGA

  • Kwang-Seop Son;Jung-Woon Lee;Seung-Hwan Seong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2952-2965
    • /
    • 2023
  • Advanced reactors, such as Small Modular Reactors or existing Nuclear Power Plants, often use Field Programmable Gate Array (FPGA) based controllers in new Instrumentation and Control (I&C) system architectures or as an alternative to existing analog-based I&C systems. Compared to CPU-based Programmable Logic Controllers (PLCs), FPGAs offer better overall performance. However, programming functions on FPGAs can be challenging due to the requirement for a hardware description language that does not explicitly support the operation of real numbers. This study aims to implement the Reactor Trip (RT) functions of the existing analog-based Reactor Protection System (RPS) using FPGAs. The RT equations for Overtemperature delta Temperature and Overpower delta Temperature involve dynamic compensators expressed with the Laplace transform variable, 's', which is not directly supported by FPGAs. To address this issue, the trip equations with the Laplace variable in the continuous-time domain are transformed to the discrete-time domain using the Z-transform. Additionally, a new operation based on a relative value for the equation range is introduced for the handling of real numbers in the RT functions. The proposed approach can be utilized for upgrading the existing analog-based RPS as well as digitalizing control systems in advanced reactor systems.

Digital Relaying Algorithm for Power Transformer Protection using Fuzzy Logic Approach

  • Park, Chul-Won;Shin, Myong-Chul
    • KIEE International Transactions on Power Engineering
    • /
    • v.2A no.4
    • /
    • pp.153-159
    • /
    • 2002
  • Power transformer protective relay should block the tripping during magnetizing inrush and rapidly operate the tripping during internal faults. Recently, the frequency environment of power system has been made more complicated and the quantity of 2nd frequency component in inrush state has been decreased because of the improvement of core steel. And then, traditional approaches will likely be maloperate in the case of magnetizing inrush with low second harmonic component and internal faults with high second harmonic component. This paper proposes a new relaying algorithm to enhance the fault detection sensitivities of conventional techniques by using a fuzzy logic approach. The proposed fuzzy based relaying algorithm consists of flux-differential current derivative curve, harmonic restraint, and percentage differential characteristic curve. The proposed relaying was tested with relaying signals obtained from EMTP simulation package and showed a fast and accurate trip operation.

On-line Estimation of DNB Protection Limit via a Fuzzy Neural Network

  • Na, Man-Gyun
    • Nuclear Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.222-234
    • /
    • 1998
  • The Westinghouse OT$\Delta$T DNB protection logic heavily restricts the operation region by applying the same logic for a full range of operating pressure in order to maintain its simplicity. In this work, a fuzzy neural network method is used to estimate the DNB protection limit using the measured average temperature and pressure of a reactor core. Fuzzy system parameters are optimized by a hybrid learning method. This algorithm uses a gradient descent algorithm to optimize the antecedent parameters and a least-squares algorithm to solve the consequent parameters. The proposed method is applied to Yonggwang 3&4 nuclear power plants and the proposed method has 5.99 percent larger thermal margin than the conventional OT$\Delta$T trip logic. This simple algorithm provides a good information for the nuclear power plant operation and diagnosis by estimating the DNB protection limit each time step.

  • PDF

Development of an Intelligent Power Plant Operating State Monitoring System (발전소 설비 운영상태 지능감시 시스템 개발)

  • Hong, Chang-Ho;Kim, Seok-Hyun;Lee, Seung-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.1
    • /
    • pp.38-43
    • /
    • 2012
  • For safe and stable operations of power plants, it is essential to monitor closely crucial measurement values related to power plant trips. In this paper, an intelligent power plant operating state monitoring technique enabling the operating crew member to monitor conveniently the status of the important measurement values and to perceive almost instantly the significance of the implications of those measurement values is developed. The proposed technique is called a "POST(Plant Operating State Tracking) Chart" technique and provides the foundations in developing an intelligent and integrated power plant operating state monitoring support system called the "P-OASIS"(Plant Operation Assessment and Support Intelligent System). The P-OASIS is applied to a thermal power plant of 500[MW] capacity and exhibited impressive performances.

Economical run strategy for Korea High Speed Train Prototype (한국형 고속전철 경제운전 전략)

  • Lee Tae-Hyung;Park Choon-Soo
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1381-1385
    • /
    • 2004
  • This paper presents a modelling methodology using fuzzy logic and train performance simulation for determining an economical running pattern for a high speed train which minimizes energy consumption under an given trip margin. The economical running pattern is defined with an economical maximum speed in traction phase, a speed at the end of coasting. As a case study, the simulation is carried out for an economical run of korea high speed train prototype, and the results of fuzzy model described.

  • PDF

Fuzzy Logic Based Relaying Using Flux-differential Current Derivative Cure for Power Transformer Protection

  • Kwon, Myoung-Hyun;Park, Chul-Won;Suh, Hee-Seok;Lee, Bock-Gu;Shin, Myong-Chul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.5
    • /
    • pp.72-82
    • /
    • 1998
  • Power transformer protective relay should block the tripping during magnetizing imrush and rapidly operate the tripping during internal faults. But traditional approaches maloperate in the case of magnetizing inrush with low second harmonic component and internal faults with high second harmounic component. To enhance the fault detection sensitivities of conventional technuques, flux-differential current derivative curve by fuzzy theory approaches is used. This paper deals with fuzzy logic based protective relaying for power transformer. The proposed fuzzy based relaying algorithm consisits of flux-differential current derivative curve, harmonics restraint, and precentage differential characteristic curv. The proposed relaying was tested with relaying signals obtained from Salford EMTP simulation package and showed a fast and accurate trip operation.

  • PDF