• Title/Summary/Keyword: Trimetallic

Search Result 7, Processing Time 0.019 seconds

Synthesis of Trimetallic Au@Pb@Pt Core-shell Nanoparticles and their Electrocatalytic Activity toward Formic Acid and Methanol

  • Patra, Srikanta;Yang, Hae-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1485-1488
    • /
    • 2009
  • A facile, seed-mediated preparation method of trimetallic Au@Pb@Pt core-shell nanoparticles is developed. Au nanoparticles are the template seeds onto which sequentially reduced Pb and Pt are deposited. The trimetallic core-shell structure is confirmed by UV-Vis spectroscopy, TEM and EDS analysis, and cyclic voltammetry. The trimetallic Au@Pb@Pt core-shell nanoparticles show high electrocatalytic activity for formic acid and methanol electrooxidation.

Effect of Bimetallic Pt-Rh and Trimetallic Pt-Pd-Rh Catalysts for Low Temperature Catalytic Combustion of Methane

  • Bhagiyalakshmi, Margandan;Anuradha, Ramani;Park, Sang-Do;Park, Tae-Sung;Cha, Wang-Seog;Jang, Hyun-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.120-124
    • /
    • 2010
  • Monometallic, bimetallic and trimetallic particles consisting of different weight compositions of Pt-Pd-Rh over pure alumina wash coats have been synthesized and their catalytic performance on methane conversion was studied from 150 to $600^{\circ}C$. Different catalyst formulations with variable Pt, Pd and Rh contents for bimetallic and trimetallic systems were tried and $Pt_{(1.5)}Rh_{(0.3)}/Al_2O_3$ and $Pt_{(1.0)}Pd_{(1.0)}Rh_{(0.3)}/Al_2O_3$ shows low $T_{50}$ and $T_{90}$ temperatures. Bimetallic and trimetallic particle synergism acts as three way catalysts and therefore, all the catalysts show 100% methane conversion. The effect of supports such as $ZrO_2$ and $TiO_2$ on methane combustion was investigated; from $T_{50}$ and $T_{90}$ results both $Al_2O_3$ and $ZrO_2$ are suitable supports for low temperature methane combustion.

Synthesis and Characterization of Trimetallic Rare Earth Orthoferrites, $La_xSm_{1-x}FeO_3$

  • Traversa, Enrico;Gusmano, Gualtiero;Allieri, Brigida;Depero, Laura E.;Sangaletti, Luigi;Aono, Hiromichi;Sadaoka, Yoshihiko
    • The Korean Journal of Ceramics
    • /
    • v.6 no.1
    • /
    • pp.21-26
    • /
    • 2000
  • Nanosized powders of trimetallic orthoferrites containing La and Sm in different ratios were synthesised by the thermal decomposition at low temperatures of the corresponding hexacyanocomplexes. The precursors and their decomposition products were analyzed by simultaneous thermogravimetric and differential thermal analysis (TG/DTA), x-ray diffraction (XRD) and Raman spectroscopy. Single phase trimetallic precursors and oxides were obtained. The crystal structure of the perovskitic oxides was orthorhombic, and the lattice parameters were affected by the ionic size of the rare earth elements present in the oxides. Raman spectroscopy showed a disorder effect in the vibrational bands with increasing the La content.

  • PDF

The Effect of K Promoter on Ni-Co (Bimetallic) Catalyst for Dry Methane Reforming

  • Dharmasaroja, Nichthima;Phongaksorn, Monrudee;Tungkamani, Sabaithip;Ratana, Tanakorn;Sornchammi, Thana
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.2
    • /
    • pp.110-117
    • /
    • 2015
  • 10 wt% (Ni-Co) catalysts with different Ni and Co content : 10%Ni, 9%Ni1%Co, 7%Ni3%Co, 5%Ni5%Co, 3%Ni7%Co, and 10%Co; were prepared using sol-gel method followed by incipient wetness impregnation method. To investigate the catalytic activity including the stability, dry methane reforming were demonstrated over the pelletized catalysts at $620^{\circ}C$ under atmospheric pressure in a $CH_4:CO_2:N_2$ feedstock for 360 min. The results showed that bimetallic catalysts with the Co content equal to or greater than 3% were more stable than monometallic catalysts (10%Ni and 10%Co). The temperature programmed hydrogenation interpreted that the additional of Co into Ni catalyst improved the carbon resistance from methane cracking. Promoted this type of bimetallic catalyst using 1wt% K (trimetallic catalyst) prevented the carbon formation on the catalyst. The temperature programmed desorption of $CO_2$ indicated that this trimetallic catalyst has a greater number of strong basic sites. Moreover, the appearance of K lowered the number of weak basic sites and decreased the conversion of methane by 12 %.

Revolutionizing Energy Storage: Exploring Processing Approaches and Electrochemical Performance of Metal-Organic Frameworks (MOFs) and Their Hybrids

  • Wajahat Khalid;Muhammad Ramzan Abdul Karim;Mohsin Ali Marwat
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.14-31
    • /
    • 2024
  • The text highlights the growing need for eco-friendly energy storage and the potential of metal-organic frameworks (MOFs) to address this demand. Despite their promise, challenges in MOF-based energy storage include stability, reproducible synthesis, cost-effectiveness, and scalability. Recent progress in supercapacitor materials, particularly over the last decade, has aimed to overcome these challenges. The review focuses on the morphological characteristics and synthesis methods of MOFs used in supercapacitors to achieve improved electrochemical performance. Various types of MOFs, including monometallic, binary, and tri-metallic compositions, as well as derivatives like hybrid nanostructures, sulfides, phosphides, and carbon composites, are explored for their energy storage potential. The review emphasizes the quest for superior electrochemical performance and stability with MOF-based materials. By analyzing recent research, the review underscores the potential of MOF-based supercapacitors to meet the increasing demands for high power and energy density solutions in the field of energy storage.

Gadolinium Complexes of Bifunctional Diethylenetriaminepentaacetic Acid (DTPA)-bis(amides) as Copper Responsive Smart Magnetic Resonance Imaging Contrast Agents (MRI CAs)

  • Nam, Ki Soo;Park, Ji-Ae;Jung, Ki-Hye;Chang, Yongmin;Kim, Tae-Jeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2900-2904
    • /
    • 2013
  • We present the synthesis and characterization of DTPA-bis(histidylamide) (1a), DTPA-bis(aspartamide) (1b), and their gadolinium complexes of the type $[Gd(L)(H_2O)]$ (2a:L = 1a; 2b:L = 1b). Thermodynamic stabilities and $R_1$ relaxivities of 2a-b compare well with Omniscan$^{(R)}$, a well-known commercial, extracellular (ECF) MRI CA which adopts the DTPA-bis(amide) framework for the chelate: $R_1$ = 5.5 and 5.1 $mM^{-1}$ for 2a and 2b, respectively. Addition of the Cu(II) ion to a solution containing 2b triggers relaxivity enhancement to raise $R_1$ as high as 15.3 $mM^{-1}$, which corresponds to a 300% enhancement. Such an increase levels off at the concentration beyond two equiv. of Cu(II), suggesting the formation of a trimetallic ($Gd/Cu_2$) complex in situ. Such a relaxivity increase is almost negligible with Zn(II) and other endogenous ions such as Na(I), K(I), Mg(II), and Ca(II). In vivo MR images and the signal-to-noise ratio (SNR) obtained with an aqueous mixture of 2b and Cu(II) ion in an 1:2 ratio demonstrate the potentiality of 2 as a copper responsive MRI CA.

Synthesis of Trimetallic (PtRu-Sn/VC, PtRu-Ni/VC) Catalysts by Radiation Induced Reduction for Direct Methanol Fuel Cell (DMFC) (방사선환원법을 이용한 직접메탄올연료전지용(DMFC) 삼성분계촉매(PtRu-Sn/VC, PtRu-Ni/VC)의 합성)

  • Kim, Sang Kyum;Park, Ji Yun;Hwang, Sun Choel;Lee, Do Kyun;Lee, Sang Heon;Rhee, Young Woo;Han, Moon Hee
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.320-326
    • /
    • 2013
  • Nano-sized PtRu-Ni/VC and PtRu-Sn/VC electrocatalysts were synthesized by a one-step radiation-induced reduction (RIR) (30 kGy) process using distilled water as the solvent and Vulcan XC-72 as the supporting material. The obtained electrocatalysts were characterized by transmission electron microscopy (TEM), scanning electron microscope energy dispersive spectroscopic (SEM-EDS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), respectively. The catalytic efficiency of electrocatalysts was examined for oxygen reduction, MeOH oxidation and CO stripping decreased in the following order, Hydrogen stripping : PtRu-Sn/VC > PtRu-Ni/VC > PtRu/VC$^{(R)}$ (E-TEK). MeOH oxidation : PtRu-Sn/VC > PtRu-Ni/VC > PtRu/ VC$^{(R)}$ (E-TEK). Unit cell performance : PtRu-Sn/VC > PtRu-Ni/VC > PtRu/VC$^{(R)}$ (E-TEK) catalysts.