• Title/Summary/Keyword: Trigger Voltage

Search Result 123, Processing Time 0.025 seconds

Dependence of External Magnetic Field in the Matrix-Type SFCL with the Separated or the Integrated Reactors (분리형과 일체형 리액터에 따른 매트릭스형 초전도 한류기의 외부자장 의존성 연구)

  • Cho, Yong-Sun;Choi, Hyo-Sang;Jung, Byoung-Ik;Go, Sung-Pil
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.880-884
    • /
    • 2011
  • The matrix-type superconducting fault current limiter (MSFCL) consists of the trigger and current-limiting parts. The trigger part with reactors connected in parallel improves the quenching characteristics by applying the external magnetic field into the superconducting units. The current-limiting part with superconducting units connected in parallel and shunt reactors connected in series limit the fault current when the fault occurs. We developed the integrated reactor with the trigger and the current-limiting parts to apply high external magnetic field into the superconducting units. This was composed of a superconducting unit for the trigger part and two superconducting units for the current-limiting parts. We confirmed that the external magnetic field generated in the MSFCL with an integrated reactor was larger than that of the MSFCL with the separated reactors. So the differences of voltages generated between superconducting units were decreased in the difference according to the increment of the applied voltage. The whole magnitude of the SFCL was reduced because the volume of an integrated reactor could be reduced by one-third than that of the separated reactors. We confirmed that the critical behavior between the superconducting units in the MSFCL with an integrated reactor was more improved than that of the MSFCL with the separated reactors.

A Study on the Electrical Characteristic of SCR-based Dual-Directional ESD Protection Circuit According to Change of Design Parameters (SCR 기반 양방향성 ESD보호회로의 설계 변수 변화에 따른 전기적 특성의 관한 연구)

  • Kim, Hyun-Young;Lee, Chung-Kwang;Nam, Jong-Ho;Kwak, Jae-Chang;Koo, Yong-Seo
    • Journal of IKEEE
    • /
    • v.19 no.2
    • /
    • pp.265-270
    • /
    • 2015
  • In this paper, we proposed a dual-directional SCR (silicon-controlled rectifier) based ESD (electrostatic discharge) protection circuit. In comparison with conventional SCR, this ESD protection circuit can provide an effective protection against ESD pulses in the two opposite directions, so the ESD protection circuit can be discharged in two opposite direction. The proposed circuit has a higher holding voltage characteristic than conventional SCR. These characteristic enable to have latch-up immunity under normal operating conditions as well as superior full chip ESD protection. it was analyzed to figure out electrical characteristics in term of individual design parameters. They are investigated by using the Synopsys TCAD simulator. In the simulation results, it has trigger voltage of 6.5V and holding voltage increased with different design parameters. The holding voltage of the proposed circuit changes from 2.1V to 6.3V and the proposed circuit has symmetrical I-V characteristic for positive and negative ESD pulse.

The Design of low voltage step-down DC-DC Converter with ESD protection device of low voltage triggering characteristics (저 전압 트리거형 ESD 보호회로를 탑재한 저 전압 Step-down DC-DC Converter 설계)

  • Yuk, Seung-Bum;Lee, KJae-Hyun;Koo, Yong-Seo
    • Journal of IKEEE
    • /
    • v.10 no.2 s.19
    • /
    • pp.149-155
    • /
    • 2006
  • In this study, the design of low voltage DC-DC converter with low triggering ESD (Electro-Static Discharge) protection circuit was investigated. The purpose of this paper is design optimization for low voltage(2.5V to 5.5V input range) DC-DC converter using CMOS switch. In CMOS switch environment, a dominant loss component is not switching loss but conduction loss at 1.2MHz switching frequency. In this study a constant frequency PWM converter with synchronous rectifier is used. And zener Triggered SCR device to protect the ESD phenomenon was designed. This structure reduces the trigger voltage by making the zener junction between the lateral PNP and base of lateral NPN in SCR structure. The triggering voltage was simulated to 8V.

  • PDF

The novel NPLVTSCR ESD ProtectionCircuit without Latch-up Phenomenon for High-Speed I/O Interface (Latch-up을 방지한 고속 입출력 인터페이스용 새로운 구조의 NPLVTSCR ESD 보호회로)

  • Koo, Yong-Seo
    • Journal of IKEEE
    • /
    • v.11 no.1 s.20
    • /
    • pp.54-60
    • /
    • 2007
  • In this study novel ESD protection device, namely, N/P-type Low Voltage Triggered SCR, has been proposed, for high speed I/O interface. Proposed device could lower high trigger voltage($\sim$20V) of conventional SCR and reduce latch-up phenomenon of protection device during the normal condition. In this Study, the proposed NPLVTSCR has been simulated using TMA MEDICI device simulator for electrical characteristic. Also the proposed device's test pattern was fabricated using 90nm TSMC's CMOS process and was measured electrical characteristic and robustness. In the result, NPLVTSCR has 3.2V $\sim$ 7.5V trigger voltage and 2.3V $\sim$ 3.2V holding voltage by changing PMOS gate length and it has about 2kV, 7.5A HBM ESD robustness(IEC61000-4-2).

  • PDF

A Low-Power MPPT Interface for DC-Type Energy Harvesting Sources (DC 유형의 에너지 하베스팅 자원을 활용한 저전력의 MPPT 인터페이스)

  • Jo, Woo-Bin;Lee, Jin-Hee;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.35-38
    • /
    • 2018
  • This paper describes a low-power MPPT interface for DC-type energy harvesting sources. The proposed circuit consists of an MPPT controller, a bias generator, and a voltage detector. The MPPT controller consists of an MPG (MPPT Pulse Generator) with a schmitt trigger, a logic gate operating according to energy type (light, heat), and a sample/hold circuit. The bias generator is designed by employing a beta multiplier structure, and the voltage detector is implemented using a bulk-driven comparator and a two-stage buffer. The proposed circuit is designed with $0.35{\mu}m$ CMOS process. The simulation results show that the designed circuit consumes less than 100nA of current at an input voltage of less than 3V and the maximum power efficiency is 99.7%. The chip area of the designed circuit is $1151{\mu}m{\times}940{\mu}m$.

  • PDF

Isolated Feedback of Inverter DC-Link Voltage Using Flyback Converters (플라이백 컨버터를 이용한 인버터 직류링크 전압의 절연 궤환)

  • Kim, Kyung-Seo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.4
    • /
    • pp.281-285
    • /
    • 2018
  • An isolated feedback method for measuring the inverter DC-link voltage is proposed. This method provides a simple and economical solution to inverter control systems that use a flyback converter as a controller power supply. In the proposed method, data on the DC-link voltage are acquired when the primary side voltage appears on the secondary side of the flyback transformer, thereby eliminating the need to adopt an extra signal isolation method. To solve the non-synchronization problem between the flyback converter switching and main controller sampling, the external interrupt function of the micro-controller is used as a trigger signal for the A/D conversion.

A Study on Fast Switching System for High Power Pulse (대전력 펄스의 고속 스위칭 연구)

  • Lee, Seok-Woo;Lee, Young-Ho;Ha, Seoung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.1869-1871
    • /
    • 1998
  • In this paper, we designed and fabricated a fast switching system for high power pulse. This system consists of a voltage conversion circuit, high voltage charging circuit, trigger circuit, and discharging circuit. Especially discharging line is designed by strip-line for low inductance and resistance. The experimental result is that current slew rate of the system is 6.67kA/86ns and this result is fully qualified for initiating EBW or EFI

  • PDF

A Study on The Design of High Speed-Low Voltage LVDS Driver Circuit with Novel ESD Protection Device (새로운 구조의 ESD 보호소자를 내장한 고속-저 전압 LVDS 드라이버 설계에 관한 연구)

  • Kim, Kui-Dong;Kwon, Jong-Ki;Lee, KJae-Hyun;Koo, Yong-Seo
    • Journal of IKEEE
    • /
    • v.10 no.2 s.19
    • /
    • pp.141-148
    • /
    • 2006
  • In this study, the design of advanced LVDS(Low Voltage Differential Signaling) I/O interface circuit with new structural low triggering ESD (Electro-Static Discharge) protection circuit was investigated. Due to the differential transmission technique and low signal swing range, maximum transmission data ratio of designed LVDS transmitter was simulated to 5Gbps. And Zener Triggered SCR devices to protect the ESD Phenomenon were designed. This structure reduces the trigger voltage by making the zener junction between the lateral PNP and base of lateral NPN in SCR structure. The triggering voltage was simulated to 5.8V. Finally, The high speed I/O interface circuit with the low triggered ESD protection device in one-chip was designed.

  • PDF

A solid-state switch based high-voltage pulsed power supply (반도체 스위치형의 고전압 펄스 전원장치)

  • Kim, Guang-Hoon;Lee, Hong-Sik;Sytykh, D.;Rim, Geun-Hie
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.215-217
    • /
    • 2001
  • This paper describes an all solid-state switch pulse generator for various applications where square pulse voltage is required. The pulse generator produces various voltage pulses: voltage $5{\sim}100kV$. current $10{\sim}200A$, pulse width $1{\sim}10{\mu}sec$, repetition rate up to 500Hz. The output power is the combination of these parameters up to 10kW. It consists of a DC-DC converter and several pulse generating modules which are connected in series to obtain higher pulse voltage. Each module contains semiconductor switches (IGBT's), energy storage capacitors and control units to trigger switches. The structure and operational principle are described and the protection circuit for reliable operation is suggested. Experimental results show that the pulse generator can be used for applications with nonlinear loads.

  • PDF

Development of High-voltage Semiconductor Switch for Command Charging (지령충전을 위한 고전압 반도체 스위치 개발)

  • Park, S.S.;Lee, K.T.;Kim, S.H.;Park, S.W.;Nam, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2189-2191
    • /
    • 1999
  • To improve the reliability of the klystron-modulator systems, the stable operations of the thyratron an important factor of the system are required. The thyratron always has a possibility of self-fire according to the conditions of the applied high voltage and this induces the system fault. Therefore a command charging method was introduced to reduce the applied tim8 of the high voltage into the thyratron. The high voltage switch used in the command charging method is the SCR (1.6 kV, 50A) and consists of 10 SCRs in series to discharge 10 kV. A pulse transformer was used to apply the trigger pulse. The objectives of this research are the fabrication of the semiconductor switch and the study of the experimental result of the operation characteristics of the high voltage semiconductor switch.

  • PDF