• 제목/요약/키워드: Trichoderma virens

검색결과 24건 처리시간 0.023초

Molecular and Morphological Characterization of Green Mold, Trichoderma spp. isolated from Oyster Mushrooms

  • Choi, In-Young;Hong, Seung-Beom;Yadav, Mahesh C.
    • Mycobiology
    • /
    • 제31권2호
    • /
    • pp.74-80
    • /
    • 2003
  • Isolates of Trichoderma spp. collected from Pleurotus ostreatus and P. eryngii beds, which included loosened substrate compactness and development of green colour, were grouped into three species. The occurrence of different species of Trichoderma was as T. cf. virens(70.8%), T. longibrachiatum(16.7%) and T. harzianum(12.5%). The conidia of Trichoderma spp. were ellipsoidal, obovoid and phialides were bowling pins, lageniform and the length of phialides was $3.5{\sim}10.0{\times}1.3{\sim}3.3{\mu}m$. Phialides of T. cf. virens and T. harzianum were tending clustered, but it was solitary disposition in T. longibrachiatum. T. cf. virens was characterized by predominantly effuse conidiation, sparingly branched, and fertile to the apex and it was penicillate type. RAPD analysis could detect variability amongst three different species of Trichoderma using two newly designed URP-primers. However, intra-specific variation could not be detected in all the isolates except for rDNA sequence data classified Trichoderma isolates into three distinct groups representing three species. The profiles of rDNA sequences of isolates representing a species showed high similarity in T. cf. virens and T. harzianum. However, there was a variation in rDNA sequences of isolates representing T. longibrachiatum. The results of present study reveals that molecular techniques of RAPD and rDNA sequencing can greatly aid in classification based on morphology and precise identification of fast evolving species of Trichoderma.

Gliocladium virens 와 Trichoderma harzianum의 속간(屬間) 원형질체융합(原形質體融合) (Intergeneric protoplast fusion between Gliocladium virens and Trichoderma harzianum)

  • 신평균;조무제
    • 한국균학회지
    • /
    • 제21권4호
    • /
    • pp.323-331
    • /
    • 1993
  • The protoplast formation and intergeneric protoplast fusion between Gliocladium virens and Trichoderma harzianum were attempted to obtain fusants. Protoplast formation was the most effective when the strains were treated with concentration of 5 mg/ml of Novozyme 234 and Cellulase at $25^{\circ}C$ for 3 hours in phosphate buffer, pH 6.5, supplemented with 0.6 M sorbitol as osmotic stabilizer. Auxotrophic mutants of G. virens G88 did not grow in minimal medium and benomyl resistant T. harzianum T95 from wild types, however, was selected by treatment with UV light as genetic marker to isolate fusants. When the intergeneric protoplast fusion between G. virens G88 and T. harzianum T95 was carried out using 30% PEG 4000 containing 10 mM $CaCl_{2}$, and 50 mM glycine (pH 8.5) as fusogenic agent at $25^{\circ}C$ for 10-15 min, the fusion frequency was $0.8{\times}10^{-4}$. Fusants obtained from intergeneric protoplast fusion were spontaneously segregated into va rious strains by continous culture on complete medium. Several intergeneric hybrids were classified into three types: parent-like hybrids, segregants, and recombinants.

  • PDF

Aphelenchus avenae and Antagonistic Fungi as Biological Control Agents of Pythium spp.

  • Jun, Ok-Kyoung;Kim, Young-Ho
    • The Plant Pathology Journal
    • /
    • 제20권4호
    • /
    • pp.271-276
    • /
    • 2004
  • To examine the control effect of damping-off on radish caused by Pythium spp., researchers used the isolates of a fungivorous nematode, Aphelenchus avenae, and antagonistic fungi, Trichoderma spp. These were used as biocontrol agents, either alone, or in combination. Growth rates of the A. avenae isolates and fungal damages by the nematodes varied depending on Trichoderma spp., which contained lower T. koningii and T. virens cultures than other Trichoderma cultures. Phythium spp. were damaged by all five Aphelenchus isolates, but the multiplication rate of nematode isolate Aa-3 was very poor. Antibiotic activity of T. virens and T. harzianum to Pythium spp. was stronger than that of T. koningii. Control efficacy against damping-off of radish was most enhanced under the treatment using the nematode-T. harzianum combination. On the contrary, the combinations of the nematodes and T. virens or T. koningii mostly did not increase or decreased their control effect vis-$\`{a}$-vis that of the nematodes or antagonistic fungi being used alone. The results suggest that the fungivorous nematodes may play a leading role in the disease control, and that the activity of the fungivorous nematodes may be activated by T. harzianum, but inhibited by T. koningii and T.virens.

Molecular Characterization of Intergeneric Hybrids between Trichoderma harzianum and Gliocladium virens

  • Shin, Pyung-Gyun;Ryu, Jin-Chang;Yoo, Young-Bok;Jeong, Won-Hwa;Cho, Moo-Je
    • Journal of Microbiology and Biotechnology
    • /
    • 제7권3호
    • /
    • pp.161-166
    • /
    • 1997
  • Nuclei were isolated from the protoplasts of Trichoderma harzianum T95 and treated with colchicine, a polyploid inducer. The nuclei were transferred into the protoplast of multi-auxotrophic Gliocladium virens G88 which cannot grow in minimal medium. The protoplast of G. virens G88 carrying the transferred nuclei were regenerated in a regeneration minimal medium containing $17{\mu}g/ml$ of chloroneb as a haploid inducer. Six intergeneric hybrids between G. virens and T. harzianum were isolated from the regeneration minimal medium. The hybrids could be classified into three types according to morphology, those with an isozyme pattern, those with an protein band and those with an randomly amplified polymorphic DNA(RAPD) pattern produced by random primers and repetitive sequences. The first group was identified to be a haploid recombinant, the second group a heterokaryon, and the third appeared to be petite.

  • PDF

Physiological Characteristics of Green Mold(Trichoderma spp.) Isolated from Oyster Mushroom(Pleurotus spp.)

  • Choi, In-Young;Joung, Gi-Tae;Ryu, Joung;Choi, Joung-Sik;Choi, Yeong-Geun
    • Mycobiology
    • /
    • 제31권3호
    • /
    • pp.139-144
    • /
    • 2003
  • This study was conducted to investigate physiological characteristics of Trichoderma spp. isolated from Pleurotus spp. Damage tests of Pleurotus spp. and mycotoxins tests of Trichoderma spp. were also done. The optimal growth temperature of Trichoderma spp. was $27{\sim}30^{\circ}C$. Although, T. longibrachiatum was able to grow at $37^{\circ}C$ and grew $30{\sim}40$ times faster than Pleurotus. The colony colour on PDA medium of T. cf. virens was yellowish green, T. longibrachiatum was yellow, and T. harzianum was turning to bright green. In damage tests of Pleurotus by Trichoderma, T. cf. virens caused the most severe damage to Pleurotus. T. longibrachiatum and T. harzianum caused less damage on Pleurotus but were able to cause greater damage to P. eryngii. One of the mushroom cultivars, P. ostreatus 8 was the most resistant to all Trichoderma spp.. Chitinolytic mycotoxin released by Trichoderma spp. caused 52.7% damage to Pleurotus. Mycotoxins released by T. longibrachiatum caused the greatest damaged(78.6%) on P. eryngii.

느타리버섯 발생하는 푸른곰팡이병원균의 동정 및 병원학적 특성 (Identification of oyster mushroom green mold pathogen that causes and pathological characteristics)

  • 전창성;임훈태;박혜성;이찬중;원항연;석순자;유관희;성기호
    • 한국버섯학회지
    • /
    • 제12권2호
    • /
    • pp.132-137
    • /
    • 2014
  • 균상느타리버섯에서 발생하는 곰팡이 병해 중에서 가장 많은 문제를 발생하는 것은 Trichoderma disease 또는 green mould 등으로 불리우는 푸른곰팡이병이다. 이 병은 Trichoderma, Penicillium, Aspergillus 등의 속(genus)에 포함되는 종들에 의해 발병되는 병을 총칭하는 것으로 발생빈도와 피해가 가장 큰 것은 Trichoderma 속의 병원균에 의해 발생하였다. 느타리버섯 균상에 분리된 병원균은 T. longibrachiatum, T. koningii, Trichoderma virens, T atroviride, T. hazianum, T. pseudokoningii 6종이었으며, 발생빈도가 높은 것은 T. virens, T. hazianum, T. longibrachiatum 3종이었고, 각각의 균은 배양적 특성 및 병원성도 각기 다른 특성을 보이고 있었다. T. longibrachiatum 균사생장이 매우 빠르고, 포자형성이 빠르며, 특히 후막포자형성이 잘되는 특성을 있으며, 후기에는 진한 녹색으로 변색된다. Trichoderma koningii는 균사생장은 빠르고, 공중균사가 많은 편이며, 포자는 공중균사에 밀집되어 형성된다. 특히 Trichoderma virens 같은 경우에는 포자형성에 의한 색깔변화가 느리며, 감염후기에 발견되어 그 피해가 심한 편이었다. Trichoderma atroviride. 균사생장은 보통이며, 포자형성은 공중균사에 드물게 형성되며, 후기에는 진녹색을 띤다. 이균의 특징은 coconut 냄새와 유사한 향기가 나는 것이다. T. hazianum은 초기에는 균사가 백색으로 매우 빠르고, 공중균사에 포자가 형성하며, 후기에는 진한 녹색으로 변색된다. 공중 균사에 형성된 포자는 육안적으로 pustules or tufts의 형태를 나타내었다. Trichoderma pseudokoningii 균사생장은 빠르며, 포자형성은 접종부위를 중심으로 형성되며, 후기에는 환무니를 형성하며, 특히 배지 색이 변색되고 후막포자 잘 형성되는 특징이 있었다.

Gliocladium virens와 Trichoderma harzianum의 속간(屬間) 핵(核) 전이체(轉移體)의 효율적(效率的) 선발(選拔) (A Efficient Selection of Hybrids Following Intergeneric Transfer of Nuclei from Trichoderma harzianum into Gliocladium virens Protoplasts)

  • 신평균;유영복;류진창;박용환;조무제
    • 한국균학회지
    • /
    • 제22권3호
    • /
    • pp.276-280
    • /
    • 1994
  • 길항작용 뿐만 아니라 식물생장촉진효과가 있는 속간 핵 전이체를 선발하기 위하여 T. harzianum의 원형질체로부터 핵을 분리한 다음 $15\:{\mu}g/ml$의 콜히친을 처리하였다. 최소배지에서 성장하지 않은 영양요구성 균주인 G. virens G88의 원형질체에 콜히친이 처리된 핵을 전이하여 chloroneb이 함유된 재생용 최소배지에서 선발하였다. 전이효율은 0.08%로서 콜히친 및 chloroneb을 처리하지 않은 것보다는 낮지만 segregants는 전혀 나타나지 않았다. 또한 chloroneb 농도에 따라 다양한 형태의 전이체가 선발되었으며 재조합형, 양친형, 그리고 petite형 등으로 동정되었다.

  • PDF

Morphological and Cultural Characteristics of Trichoderma spp. Associated with Green Mold of Oyster Mushroom in Korea

  • Park, Myung-Soo;Seo, Geon-Sik;Lee, Kang-Hyun;Bae, Kyung-Sook;Yu, Seung-Hun
    • The Plant Pathology Journal
    • /
    • 제21권3호
    • /
    • pp.221-228
    • /
    • 2005
  • A total of 179 isolates of Trichoderma spp. were collected from oyster mushroom substrates in Korea. On the basis of morphological and cultural characteristics, Trichoderma isolates were divided into seven groups, namely T. atroviride, T. citrinoviride, T. harzianum, T. longibrachiatum, T. virens, and two unidentified species, referred to as Trichoderma sp. 1 and 2. The predominant species was Trichoderma sp. 2 (n=86) followed by Trichoderma sp. 1 (n=52). Trichoderma sp. 1 and 2 were morphologically distinct not only from the other species of Trichoderma reported but also from each other in the characteristics such as mycelial growth rate, colony appearance, shape of conidia and conidiophores and branching pattern of phialides, although branching pattern of phialides of Trichoderma sp. 1 was similar to that of T. harzianum. In virulence test, the degree for compost colonization of Trichoderma sp. 2 was significantly greater than that of the other Trichoderma species. Trichoderma sp. 2 was found to be the main cause of green mold disease in oyster mushroom production. More work including molecular characterization is needed to confirm the species of Trichoderma sp. 1 and 2.

Chemotaxonomy of Trichoderma spp. Using Mass Spectrometry-Based Metabolite Profiling

  • Kang, Dae-Jung;Kim, Ji-Young;Choi, Jung-Nam;Liu, Kwang-Hyeon;Lee, Choong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권1호
    • /
    • pp.5-13
    • /
    • 2011
  • In this study, seven Trichoderma species (33 strains) were classified using secondary metabolite profile-based chemotaxonomy. Secondary metabolites were analyzed by liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS-MS) and multivariate statistical methods. T. longibrachiatum and T. virens were independently clustered based on both internal transcribed spacer (ITS) sequence and secondary metabolite analyses. T. harzianum formed three subclusters in the ITS-based phylogenetic tree and two subclusters in the metabolitebased dendrogram. In contrast, T. koningii and T. atroviride strains were mixed in one cluster in the phylogenetic tree, whereas T. koningii was grouped in a different subcluster from T. atroviride and T. hamatum in the chemotaxonomic tree. Partial least-squares discriminant analysis (PLS-DA) was applied to determine which metabolites were responsible for the clustering patterns observed for the different Trichoderma strains. The metabolites were hetelidic acid, sorbicillinol, trichodermanone C, giocladic acid, bisorbicillinol, and three unidentified compounds in the comparison of T. virens and T. longibrachiatum; harzianic acid, demethylharzianic acid, homoharzianic acid, and three unidentified compounds in T. harzianum I and II; and koninginin B, E, and D, and six unidentified compounds in T. koningii and T. atroviride. The results of this study demonstrate that secondary metabolite profiling-based chemotaxonomy has distinct advantages relative to ITS-based classification, since it identified new Trichoderma clusters that were not found using the latter approach.

Ribosomal DNA의 Internal Transcribed Spacer(ITS) 부위의 염기서열 분석에 의한 Gliocladium 속과 근연속에 관한 계통 분류학적 연구 (Phylogenetic Analysis of the Genus Gliocladium and its Related Taxa by Comparing the Sequences of Internal Transcribed Spacers and 5.8S r-DNA)

  • 박주영;김기영;하명규;신용국;박용하;이태호;이재동
    • 한국균학회지
    • /
    • 제27권3호통권90호
    • /
    • pp.191-197
    • /
    • 1999
  • The phylogenetic position of Gliocladium and its related taxa were investigated, using the neighbor-joining method of the sequences from internal transcribed spacers (ITS1 and ITS2) and 5.8S ribosomal DNA (rDNA). It was focused especially on the generic concept by comparing with the related genera such as Trichoderma, Hypocrea, Verticillium, Penicillium and Talaromyces. Gliocladium species and its related genus were divided into three groups by the phylogenetic analysis using the neighbor-joining method. The first group includes Penicillium-like strains such as Penicillium, Tararomyces, Verticillium and one species of Gliocladium (G. cibotii JCM 9203 and JCM 9206). Especially, Gliocladium cibotii JCM 9203 is thought to be the similar species with Verticillium bulbillosum JCM 9214. Between these two species, Gliocladium cibotii and Verticillium bulbillosum, the intraspecies concept needs to examined with culture condition. and morphological properties. The second group includes two species Verticillium, Verticillium tricorpus and Verticillium albo-atrum which extracted from the GenBank database in NCBI (National Center for Biotechnology Information). Trichoderma-like strains, such as Trichoderma, Hypocrea and several species of Gliocladium are included in the third group. Also, Gliocladium penicillioides IFO 5869 and Gliocladium catenulatum ATCC 10523 formed the subgroup of Trichoderma-like strains. The species of Gliocladium were dispersed in Trichoderma-like and Penicillinum-like group, and only one species of Gliocladium cihotii used in our study was located in Penicillium-like genus group. The species of Verticillium appeared in all three groups and the species of Trichoderma formed the monophylogeny with Hypocrea (telemorph). Also, Gliocladium virens was grouped with Trichoderma harzianum with a high bootstrap value, supporting that Gliocladium virens is to be placed in Trichoderma. The results suggest that Gliocladium is polyphyletic, and is more Trichoderma-like than Penicillium-like.

  • PDF