Browse > Article
http://dx.doi.org/10.4014/jmb.1008.08018

Chemotaxonomy of Trichoderma spp. Using Mass Spectrometry-Based Metabolite Profiling  

Kang, Dae-Jung (Department of Bioscience and Biotechnology, Kon-Kuk University)
Kim, Ji-Young (Department of Bioscience and Biotechnology, Kon-Kuk University)
Choi, Jung-Nam (Department of Bioscience and Biotechnology, Kon-Kuk University)
Liu, Kwang-Hyeon (Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine)
Lee, Choong-Hwan (Department of Bioscience and Biotechnology, Kon-Kuk University)
Publication Information
Journal of Microbiology and Biotechnology / v.21, no.1, 2011 , pp. 5-13 More about this Journal
Abstract
In this study, seven Trichoderma species (33 strains) were classified using secondary metabolite profile-based chemotaxonomy. Secondary metabolites were analyzed by liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS-MS) and multivariate statistical methods. T. longibrachiatum and T. virens were independently clustered based on both internal transcribed spacer (ITS) sequence and secondary metabolite analyses. T. harzianum formed three subclusters in the ITS-based phylogenetic tree and two subclusters in the metabolitebased dendrogram. In contrast, T. koningii and T. atroviride strains were mixed in one cluster in the phylogenetic tree, whereas T. koningii was grouped in a different subcluster from T. atroviride and T. hamatum in the chemotaxonomic tree. Partial least-squares discriminant analysis (PLS-DA) was applied to determine which metabolites were responsible for the clustering patterns observed for the different Trichoderma strains. The metabolites were hetelidic acid, sorbicillinol, trichodermanone C, giocladic acid, bisorbicillinol, and three unidentified compounds in the comparison of T. virens and T. longibrachiatum; harzianic acid, demethylharzianic acid, homoharzianic acid, and three unidentified compounds in T. harzianum I and II; and koninginin B, E, and D, and six unidentified compounds in T. koningii and T. atroviride. The results of this study demonstrate that secondary metabolite profiling-based chemotaxonomy has distinct advantages relative to ITS-based classification, since it identified new Trichoderma clusters that were not found using the latter approach.
Keywords
Trichoderma; chemotaxonomy; liquid chromatography-mass spectrometry; multivariate analysis; metabolomics;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Neumann, K., A. Abdel-Lateff, A. D. Wright, S. Kehraus, A. Krick, and G. M. Konig. 2007. Novel sorbicillin derivatives with an unprecedented carbon skeleton from the sponge-derived fungus Trichoderma species. Eur. J. Org. Chem. 14: 2268-2275.
2 Nielsen, K. F., T. Grafenhan, D. Zarari, and U. Thrane. 2005. Trichothecene production by Trichoderma brevicompactum. J. Agric. Food Chem. 53: 8190-8196.   DOI   ScienceOn
3 Parker, S. R., H. G. Cutler, and P. R. Schreiner. 1995. Isolation of a biologically active natural product from Trichoderma koningii. Biosci. Biotechnol. Biochem. 59: 1747-1749.   DOI
4 Pope, G. A., D. A. MacKenzie, M. Defernez, M. A. M. M. Aroso, L. J. Fuller, F. A. Mellon, et al. 2007. Metabolic footprinting as a tool for discriminating between brewing yeasts. Yeast 24: 667-679.   DOI   ScienceOn
5 Respinis, S. D., G. Vogel, C. Benagli, M. Tonolla, O. Petrini, and G. J. Samuels. 2010. MALDI-TOF MS of Trichoderma: Model system for the identification of microfungi. Mycol. Progress 9: 79-100.   DOI   ScienceOn
6 Singh, H. B. and D. P. Singh. 2009. From biological control to bioactive metabolites: Prospects with Trichoderma for safe human food. J. Trop. Agric. Sci. 32: 99-110.
7 Smedsgaard, J. 1997. Micro-scale extraction procedure for standardized screening of fungal metabolite production in cultures. J. Chromatogr. A 760: 264-270.   DOI
8 Kawada, M., Y. Yoshimoto, H. Kumagai, T. Someno, I. Momose, N. Kawamura, K. Isshiki, and D. Ikeda. 2004. PP2A inhibitors harzianic acid and related compounds produced by fungus strain F-1531. J. Antibiot. 57: 235-237.   DOI   ScienceOn
9 Kim, J., J. N. Choi, P. Kim, D. E. Sok, S. W. Nam, and C. H. Lee. 2009. LC-MS/MS profiling-based secondary metabolite screening of Myxococcus xanthus. J. Microbiol. Biotechnol. 19: 51-54.
10 Kubicek, C. P., J. Bissett, I. Druzhinina, C. Kulling-Grandinger, and G. Szakacs. 2003. Genetic and metabolic diversity of Trichoderma: A case study on South-East Asian isolates. Fungal Genet. Biol. 38: 310-319.   DOI   ScienceOn
11 Degenkolb, T., H. V. Dohren, N. F. Nielsen, G. J. Samuels, and H. Bruckner. 2008. Recent advances and future prospects in peptaibiotics, hydrophobin, and mycotoxin research, and their importance for chemotaxonomy of Trichoderma and Hypocrea. Chem. Biodivers. 5: 671-680.   DOI   ScienceOn
12 Kullnig, C. M., T. Krupica, S. L. Woo, R. L. Mach, M. Rey, T. Benifez, M. Lorito, and C. P. Kubicek. 2001. Confusion abounds over identities of Trichoderma of biocontrol isolates. Mycol. Res. 105: 769-772.   DOI   ScienceOn
13 Lommen, A. 2009. Metalign: Interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing. Anal. Chem. 81: 3079-3086.   DOI   ScienceOn
14 Lubeck, M., S. Bulat, I. Alekhina, and E. Lieckfeldt. 2004. Delineation of species within the Trichoderma viride/atroviride/koningii complex by UP-PCR cross-blot hybridizaion. FEMS Microbiol. Lett. 237: 255-260.
15 Druzhinina, I. S., A. G. Kopchinskiy, M. Komon, J. Bissett, G. Szakacs, and C. P. Kubicek. 2005. An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genet. Biol. 42: 813-828.   DOI   ScienceOn
16 Druzhinina, I. S., A. G. Kopchinskiy, and C. P. Kubicek. 2006. The first 100 Trichoderma species characterized by molecular data. Mycoscience 47: 55-64.   DOI   ScienceOn
17 Itoh, Y., K. Kodama, K. Furuya, S. Takahashi, T. Haneishi, Y. Takiguchi, and M. Arai. 1980. A new sesquiterpene antibiotic, heptelidic acid producing organisms, fermentation, isolation and characterization. J. Antibiot. 33: 468-473.   DOI
18 Dunlop, R. W., A. Simon, and K. Sivasithamparam. 1989. An antibiotic from Trichoderma koningii active against soilborne plant pathogens. J. Nat. Prod. 52: 67-74.   DOI
19 Frisvad, J. C., B. Andersen, and U. Thrane. 2008. The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi. Mycol. Res. 112: 231-240.   DOI   ScienceOn
20 Hoyos-Carvajal, L., S. Orduz, and J. Bissett, 2009. Genetic and metabolic biodiversity of Trichoderma from Colombia and adjacent neotropic regions. Fungal Genet. Biol. 46: 615-631.   DOI   ScienceOn
21 Vinale, F., G. Flematti, K. Sivasithamparam, M. Lorito, R. Marra, B. W. Skelton, and E. L. Ghisaberti. 2009. Harzianic acid, an antifungal and plant growth promoting metabolite from Trichoderma harzianum. J. Nat. Prod. 72: 2032-2035.   DOI   ScienceOn
22 Abe, N., T. Murata, and A. Hirota. 1998. Novel DPPH radical scavengers, bisorbicillinol and demethyltrichodimerol. Biosci. Biotechnol. Biochem. 62: 661-666.   DOI   ScienceOn
23 Abe, N., O. Sugimoto, K. I. Tanji, and A. Hirota. 2001. Sorbicillinol, a key intermediate of bisorbicillinoid biosynthesis in Trichoderma sp. USF-2690. Biosci. Biotechnol. Biochem. 65: 2271-2279.   DOI   ScienceOn
24 Abe, N., O. Sugimoto, K. I. Tanji, and A. Hirota. 2000. Identification of the quinol metabolite sorbicillinol, a key intermediate postulated in bisorbicillinoid biosynthesis. J. Am. Chem. Soc. 122: 12606-12607.   DOI   ScienceOn
25 Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA 4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599.   DOI   ScienceOn
26 Thrane, U., S. B. Poulsen, H. I. Nirenberg, and E. Lieckfeldt. 2001. Identification of Trichoderma strains by image analysis of HPLC chromatograms. FEMS Microbiol. Lett. 203: 249-255.   DOI   ScienceOn
27 Vinale, F., K. Sivasithamparam, E. L. Ghisalberti, R. Marra, M. J. Babetti, H. Li, S. L. Woo, and M. Lorito. 2008. A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol. Mol. Plant Pathol. 72: 80-86.   DOI   ScienceOn
28 Vinale, F., R. Marra, F. Scala, E. L. Ghisalberti, M. Lorito, and K. Sivasithamparam. 2006. Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett. Appl. Microbiol. 43: 143-148.   DOI   ScienceOn