Chemotaxonomy of Trichoderma spp. Using Mass Spectrometry-Based Metabolite Profiling |
Kang, Dae-Jung
(Department of Bioscience and Biotechnology, Kon-Kuk University)
Kim, Ji-Young (Department of Bioscience and Biotechnology, Kon-Kuk University) Choi, Jung-Nam (Department of Bioscience and Biotechnology, Kon-Kuk University) Liu, Kwang-Hyeon (Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine) Lee, Choong-Hwan (Department of Bioscience and Biotechnology, Kon-Kuk University) |
1 | Neumann, K., A. Abdel-Lateff, A. D. Wright, S. Kehraus, A. Krick, and G. M. Konig. 2007. Novel sorbicillin derivatives with an unprecedented carbon skeleton from the sponge-derived fungus Trichoderma species. Eur. J. Org. Chem. 14: 2268-2275. |
2 | Nielsen, K. F., T. Grafenhan, D. Zarari, and U. Thrane. 2005. Trichothecene production by Trichoderma brevicompactum. J. Agric. Food Chem. 53: 8190-8196. DOI ScienceOn |
3 | Parker, S. R., H. G. Cutler, and P. R. Schreiner. 1995. Isolation of a biologically active natural product from Trichoderma koningii. Biosci. Biotechnol. Biochem. 59: 1747-1749. DOI |
4 | Pope, G. A., D. A. MacKenzie, M. Defernez, M. A. M. M. Aroso, L. J. Fuller, F. A. Mellon, et al. 2007. Metabolic footprinting as a tool for discriminating between brewing yeasts. Yeast 24: 667-679. DOI ScienceOn |
5 | Respinis, S. D., G. Vogel, C. Benagli, M. Tonolla, O. Petrini, and G. J. Samuels. 2010. MALDI-TOF MS of Trichoderma: Model system for the identification of microfungi. Mycol. Progress 9: 79-100. DOI ScienceOn |
6 | Singh, H. B. and D. P. Singh. 2009. From biological control to bioactive metabolites: Prospects with Trichoderma for safe human food. J. Trop. Agric. Sci. 32: 99-110. |
7 | Smedsgaard, J. 1997. Micro-scale extraction procedure for standardized screening of fungal metabolite production in cultures. J. Chromatogr. A 760: 264-270. DOI |
8 | Kawada, M., Y. Yoshimoto, H. Kumagai, T. Someno, I. Momose, N. Kawamura, K. Isshiki, and D. Ikeda. 2004. PP2A inhibitors harzianic acid and related compounds produced by fungus strain F-1531. J. Antibiot. 57: 235-237. DOI ScienceOn |
9 | Kim, J., J. N. Choi, P. Kim, D. E. Sok, S. W. Nam, and C. H. Lee. 2009. LC-MS/MS profiling-based secondary metabolite screening of Myxococcus xanthus. J. Microbiol. Biotechnol. 19: 51-54. |
10 | Kubicek, C. P., J. Bissett, I. Druzhinina, C. Kulling-Grandinger, and G. Szakacs. 2003. Genetic and metabolic diversity of Trichoderma: A case study on South-East Asian isolates. Fungal Genet. Biol. 38: 310-319. DOI ScienceOn |
11 | Degenkolb, T., H. V. Dohren, N. F. Nielsen, G. J. Samuels, and H. Bruckner. 2008. Recent advances and future prospects in peptaibiotics, hydrophobin, and mycotoxin research, and their importance for chemotaxonomy of Trichoderma and Hypocrea. Chem. Biodivers. 5: 671-680. DOI ScienceOn |
12 | Kullnig, C. M., T. Krupica, S. L. Woo, R. L. Mach, M. Rey, T. Benifez, M. Lorito, and C. P. Kubicek. 2001. Confusion abounds over identities of Trichoderma of biocontrol isolates. Mycol. Res. 105: 769-772. DOI ScienceOn |
13 | Lommen, A. 2009. Metalign: Interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing. Anal. Chem. 81: 3079-3086. DOI ScienceOn |
14 | Lubeck, M., S. Bulat, I. Alekhina, and E. Lieckfeldt. 2004. Delineation of species within the Trichoderma viride/atroviride/koningii complex by UP-PCR cross-blot hybridizaion. FEMS Microbiol. Lett. 237: 255-260. |
15 | Druzhinina, I. S., A. G. Kopchinskiy, M. Komon, J. Bissett, G. Szakacs, and C. P. Kubicek. 2005. An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genet. Biol. 42: 813-828. DOI ScienceOn |
16 | Druzhinina, I. S., A. G. Kopchinskiy, and C. P. Kubicek. 2006. The first 100 Trichoderma species characterized by molecular data. Mycoscience 47: 55-64. DOI ScienceOn |
17 | Itoh, Y., K. Kodama, K. Furuya, S. Takahashi, T. Haneishi, Y. Takiguchi, and M. Arai. 1980. A new sesquiterpene antibiotic, heptelidic acid producing organisms, fermentation, isolation and characterization. J. Antibiot. 33: 468-473. DOI |
18 | Dunlop, R. W., A. Simon, and K. Sivasithamparam. 1989. An antibiotic from Trichoderma koningii active against soilborne plant pathogens. J. Nat. Prod. 52: 67-74. DOI |
19 | Frisvad, J. C., B. Andersen, and U. Thrane. 2008. The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi. Mycol. Res. 112: 231-240. DOI ScienceOn |
20 | Hoyos-Carvajal, L., S. Orduz, and J. Bissett, 2009. Genetic and metabolic biodiversity of Trichoderma from Colombia and adjacent neotropic regions. Fungal Genet. Biol. 46: 615-631. DOI ScienceOn |
21 | Vinale, F., G. Flematti, K. Sivasithamparam, M. Lorito, R. Marra, B. W. Skelton, and E. L. Ghisaberti. 2009. Harzianic acid, an antifungal and plant growth promoting metabolite from Trichoderma harzianum. J. Nat. Prod. 72: 2032-2035. DOI ScienceOn |
22 | Abe, N., T. Murata, and A. Hirota. 1998. Novel DPPH radical scavengers, bisorbicillinol and demethyltrichodimerol. Biosci. Biotechnol. Biochem. 62: 661-666. DOI ScienceOn |
23 | Abe, N., O. Sugimoto, K. I. Tanji, and A. Hirota. 2001. Sorbicillinol, a key intermediate of bisorbicillinoid biosynthesis in Trichoderma sp. USF-2690. Biosci. Biotechnol. Biochem. 65: 2271-2279. DOI ScienceOn |
24 | Abe, N., O. Sugimoto, K. I. Tanji, and A. Hirota. 2000. Identification of the quinol metabolite sorbicillinol, a key intermediate postulated in bisorbicillinoid biosynthesis. J. Am. Chem. Soc. 122: 12606-12607. DOI ScienceOn |
25 | Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA 4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. DOI ScienceOn |
26 | Thrane, U., S. B. Poulsen, H. I. Nirenberg, and E. Lieckfeldt. 2001. Identification of Trichoderma strains by image analysis of HPLC chromatograms. FEMS Microbiol. Lett. 203: 249-255. DOI ScienceOn |
27 | Vinale, F., K. Sivasithamparam, E. L. Ghisalberti, R. Marra, M. J. Babetti, H. Li, S. L. Woo, and M. Lorito. 2008. A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol. Mol. Plant Pathol. 72: 80-86. DOI ScienceOn |
28 | Vinale, F., R. Marra, F. Scala, E. L. Ghisalberti, M. Lorito, and K. Sivasithamparam. 2006. Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett. Appl. Microbiol. 43: 143-148. DOI ScienceOn |