• Title/Summary/Keyword: Tribology design

Search Result 493, Processing Time 0.025 seconds

A Study on the Load Characteristics of Air-Lubricated Hydrodynamic Herringbone-Grooved Journal Bearing (공기윤활 빗살무늬 동압 저어널베어링의 부하특성에 관한 연구)

  • 강경필;임윤철
    • Tribology and Lubricants
    • /
    • v.10 no.1
    • /
    • pp.27-34
    • /
    • 1994
  • An analysis based on the narrow groove theory is not suitable for the case of insufficient number of grooves or of non-rectangular shaped grooves. In this study, we present the solution of the compressible Reynolds equation for the air-lubricated hydrodynamic herringbonegrooved journal bearing with circular shaped grooves. From the results calculated numerically, optimal design values are obtained for the herringbone-grooved journal bearing.

Analysis of Kinematics and Tooth Profile in Harmonic Drive (주속식 감속기의 운동학 및 치형해석)

  • 전완주
    • Tribology and Lubricants
    • /
    • v.4 no.2
    • /
    • pp.60-67
    • /
    • 1988
  • Conventional theory of gear mechanism can't be applied to analyze the harmonic drive due to specific movement of the teeth. This paper deals with an analysis of kinematics and geometry of the tooth engagement of a harmonic drive comprising circular spline, flexspline and wave generator. A theoretical new tooth profile of the flexspline in meshing internal rigid gear with involute profile is obtained. Characteristics of harmonic drive reducer are shown according to parameters such as deviation coefficient, deviation distance, addendum modification coefficient. As an example, the design of harmonic drive with 1:80 reduction ratio is presented.

Lubrication Analysis of Dynamically-Loaded Crosshead Bearing for Marine Engine (동하중을 받는 박용엔진 크로스헤드 베어링의 윤활해석)

  • 김정훈;김창희;이성우;이득우
    • Tribology and Lubricants
    • /
    • v.13 no.2
    • /
    • pp.46-51
    • /
    • 1997
  • Crosshead bearings in two-stroke marine diesel engines are operated under severe conditions of lubrication because the load on the bearing is unidirectional and the sliding speed is very low and oscillatory. In this paper, the motion of journal in a bearing is investigated using the lubrication theory. Several locus paths are presented to show the effects of oil groove size, bearing clearance and oil inlet pressure. It is found that the minimum film thickness is affected by the oil groove and bearing clearance, and the oil groove is an important design factor.

A study on optimization design of sealing for sprinkler fire pipe system (스프링쿨러 소방 배관용 시일의 최적설계에 관한 연구)

  • Kim, Kyung-Seob;Kim, Chung-Kyun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.302-307
    • /
    • 2010
  • 본 연구는 최적설계 기법의 하나인 다구찌 방법을 이용하여 소방용 스프링클러 배관용 밀봉부에 대한 유한요소해석을 수행하고, 이를 통하여 소방용 배관의 밀봉안전성을 확보하고자 한다.

  • PDF

Design of Structure Corners Restraining Tribological Failures: Part I - Development of Design Formula (트라이볼로지 손상을 억제하기 위한 구조물 모서리부 설계: 제1부 - 설계공식 개발)

  • Kim, Hyung-Kyu
    • Tribology and Lubricants
    • /
    • v.31 no.4
    • /
    • pp.163-169
    • /
    • 2015
  • This paper describes a design method for the corner radius of a contacting body using the theoretical approach of contact mechanics. A complete contact, as in the case of a sharp-cornered punch, produces singular contact traction: whereas, in an incomplete contact, the singular contact traction disappears because of the rounded corners, and the contact edges are within the rounded regions. The design method aims to determine the conditions of the contact force as well as the material properties in an incomplete contact. The incomplete contact changes into the complete contact again when the contact edges exceed the rounded regions owing to either an increased contact force or the compliance of the materials. The contact length of a rounded punch is used as a parameter to derive the required conditions. As a result, a design formula is obtained, which provides a minimum allowable radius when the materials, normal contact force, and the length of a flat region of the punch are predetermined. This work consists of two parts: Part I includes a theoretical background, design method, and formula, and Part II describes the actual process with the investigation of design parameters.

Journal Bearing Design Retrofit for Process Large Motor-Generator - Part I : Bearing Performance Analysis (프로세스 대형 모터-발전기의 저어널 베어링 설계 개선 - Part I : 베어링 성능해석)

  • Lee, An Sung
    • Tribology and Lubricants
    • /
    • v.28 no.5
    • /
    • pp.197-202
    • /
    • 2012
  • In this study, with the purpose of fundamentally improving the unbalance response vibration of a large PRT motor-generator rotor by design, a performance improvement design analysis is carried-out by retrofitting tilting pad bearings, replacing the plain partial journal bearings that were originally applied for operation at a rated speed of 1,800 rpm. In this process, a goal of the design analysis is to obtain a design solution for maximizing the direct stiffness of the bearings while satisfying the key basic lubrication performance requirements such as the minimum lift-off speed and maximum oil-film temperature. The results show that with a careful design application of tilting pad journal bearings for operation at such a relatively low speed of 1,800 rpm, direct stiffness increment of the bearings by about two times can be effectively achieved. Prevention of pad unloading is also considered in the analysis. Moreover, the designs of elliptical and offset half journal bearings are also analyzed and reviewed.

Design Variables of Chemical-Mechanical Polishing Conditioning System to Improve Pad Wear Uniformity (패드 마모 균일성 향상을 위한 CMP 컨디셔닝 시스템 설계 변수 연구)

  • Park, Byeonghun;Park, Boumyoung;Jeon, Unchan;Lee, Hyunseop
    • Tribology and Lubricants
    • /
    • v.38 no.1
    • /
    • pp.1-7
    • /
    • 2022
  • Chemical-mechanical polishing (CMP) process is a semiconductor process that planarizes a wafer surface using mechanical friction between a polishing pad and a substrate surface during a specific chemical reaction. During the CMP process, polishing pad conditioning is applied to prevent the rapid degradation of the polishing quality caused by polishing pad glazing through repeated material removal processes. However, during the conditioning process, uneven wear on the polishing pad is inevitable because the disk on which diamond particles are electrodeposited is used. Therefore, the abrasion of the polishing pad should be considered not only for the variables during the conditioning process but also when designing the CMP conditioning system. In this study, three design variables of the conditioning system were analyzed, and the effect on the pad wear profile during conditioning was investigated. The three design variables considered in this study were the length of the conditioner arm, diameter of the conditioner disk, and distance between centers. The Taguchi method was used for the experimental design. The effect of the three design variables on pad wear and uniformity was assessed, and new variables used in conditioning system design were proposed.

EHD Analysis on Lubrication Mechanics of Connecting Rod Bearing

  • Kim, Chung-Kyun;Kim, Sung-Won;Kim, Han-Goo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.405-406
    • /
    • 2002
  • The main subject of this paper is analyzing the patterns of maximum oil film pressure and the minimum oil film thickness under various pre-conditions of geometric shape as functions of bearing groove and proceeding oil hole in the connecting rod bearing. As the major analytical tool, elastohydrodynamic lubrication analysis has been applied and two-intertwined results of maximum oil film pressure and minimum oil film thickness have been compared and analyzed using EXCITE program. From computed results, the optimal lubrication conditions as geometric shape of bearing groove and the proceeding oil hole have been investigated. This may be useful for the bearing designer as a firm reference.

  • PDF

Finite Element Analysis on the Stress and Displacement Characteristics of Oil Pipe (오일 파이프의 응력 및 변형거동특성에 관한 유한요소해석)

  • Kim, Chung-Kyun;Cho, Seung-Hyun
    • Tribology and Lubricants
    • /
    • v.25 no.6
    • /
    • pp.374-380
    • /
    • 2009
  • This paper presents the stress and displacement characteristics of oil pipe using the finite element analysis. Displacement in axial direction and von Mises stress of a pipe were analyzed with three design factors, which are the pipe thickness, the corrugation pitch and the corrugation height, under uniform oil pressure. The FE computed results are presented between a conventional round pipe and a rectangular pipe, which is manufactured in this study. The computed FE results show that maximum displacement in axial direction and von Mises stress of pipe are increased linearly as the oil pressure increases. Also, they are increased linearly as the corrugation pitch, corrugation height and pipe thickness increases. von Mises stress of a rectangular pipe at the edge increases sharply compared with that of a conventional round pipe. Therefore, the strength of rectangular pipe is superior to that of a conventional round pipe.