• Title/Summary/Keyword: Tribological Properties

Search Result 323, Processing Time 0.032 seconds

Tribological Properties of Carbon Layers Produced by High Temperature Chlorination in Comparison with DLC Coating (DLC 코팅과 비교된 고온 염소처리에 의한 탄소 막의 Tribological 특성)

  • Choi, Hyun-Ju;Bae, Heung-Taek;Na, Byung-Chul;Lee, Jeon-Kook;Lim, Dae-Soon
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.7
    • /
    • pp.375-380
    • /
    • 2007
  • Tribological properties of carbon layers produced by high temperature chlorination of SiC ceramic and DLC (diamond-like carbon) coatings produced by ion plating method were investigated and compared. Carbon coatings were produced by exposure of ball and disc type SiC in chlorine and hydrogen gas mixtures at $1200^{\circ}C$. After treatment for 10 h, dense carbon films up to $180{\mu}m$ in thickness were formed. Tribological behavior of newly developed carbon films were compared with that of DLC films. Wear resistance and frictional coefficient of the surface modified ball and disc type SiC were significantly improved compared to an untreated SiC specimen, and also the modified carbon layer had better performance than DLC coatings. Therefore, in this study, the newly developed carbon films have several advantages over existing carbon coatings such as DLC coatings and showed superior tribological performances.

Temperature Dependence on Structural, Tribological, and Electrical Properties of Sputtered Conductive Carbon Thin Films

  • Park, Yong-Seob;Hong, Byung-You;Cho, Sang-Jin;Boo, Jin-Hyo
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.939-942
    • /
    • 2011
  • Conductive carbon films were prepared at room temperature by unbalanced magnetron sputtering (UBMS) on silicon substrates using argon (Ar) gas, and the effects of post-annealing temperature on the structural, tribological, and electrical properties of carbon films were investigated. Films were annealed at temperatures ranging from $400^{\circ}C$ to $700^{\circ}C$ in increments of $100^{\circ}C$ using a rapid thermal annealing method by vacuum furnace in vacuum ambient. The increase of annealing temperature contributed to the increase of the ordering and formation of aromatic rings in the carbon film. Consequently, with increasing annealing temperature the tribological properties of sputtered carbon films are deteriorated while the resistivity of carbon films significantly decreased from $4.5{\times}10^{-3}$ to $1.0{\times}10^{-6}\;{\Omega}-cm$ and carrier concentration as well as mobility increased, respectively. This behavior can be explained by the increase of sp2 bonding fraction and ordering $sp^2$ clusters in the carbon networks caused by increasing annealing temperature.

Atomic-Scale Insights into Material Properties and Design

  • Sinnott, Susan B.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.75-75
    • /
    • 2012
  • This presentation will focus on computational materials research carried out across length scales. Examples will be presented that illustrate the way in which state-of-the-art quantum mechanical calculations and atomistic simulations can be applied to explain experimental data, design new structures, determine mechanisms, and enable new investigations. In particular, the presentation will present key findings from an integrated experimental and computational investigation of the tribological properties of polytetrafluoroethylene and its composites and predictions regarding the mechanical and tribological properties of inorganic nanostructured materials.

  • PDF

Tribological Properties of Co-Sputtered $MoS_2$ Films

  • Sagara, K.;Yamazaki, T.;Nishimura, M.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.145-146
    • /
    • 2002
  • Tribological properties of co-sputtered Molybdenum disulfide $(MoS_2)/Carbon\;(C)$ films were studied and compared with those of sputtered $MoS_2$ films. Friction tests were carried out using pin-on-disk friction testers to evluated their friction and wear behaviors in a vacuum ($10^{-5}Pa$), air and humid air of 30, 50, 80% RH. $MoS_2/C$ (14%) composite films exhibited about 9 times longer wear life in a vacuum and about 6 times longer wear life in dry air than $MoS_2$ films did. They also showed stable low friction coefficient of about 0.02 in a vacuum. In humid air, however, $MoS_2/C$ composite films hardly showed good tribological properties.

  • PDF

The Effect of Hydrogen on the Tribological Properties of Hydrogenated Amorphous Carbon Films

  • Shin, Jong-Han;Lim, Dae-Soon
    • The Korean Journal of Ceramics
    • /
    • v.3 no.2
    • /
    • pp.96-100
    • /
    • 1997
  • Hydrogenated amorphous carbon films were deposited on silicon substrates by using an RF PECVD. The hydrogen/methane ratio was varied from 50% to 88% to study the effect of hytdrogen in the film on the tribological properties. The friction and wear behaviors of the deposited films were investigated by ball-on-disk type wear tester. FT-IR spectra were used to characterize the structure of the films. Tribological properties of carbon films were correlated with their structure such as ratio of "polymer-like" stretching type and that of sp2 bonding. The result showed that the annealing caused a decrease in the amount of wear of contacted $Si_3N_4$ balls and a increase in the coefficient of friction. Possible explanation for annealing effect was discussed by the hydrogen desorption.esorption.

  • PDF

Mechanical and Tribological Properties of $\beta-Sialon/SiC$ Whisker Composite ($\beta-Sialon/SiC$ Whisker 복합재료의 기계적 물성 및 마찰 마모 특성 연구)

  • 김호균;소유영;김인섭;이병하
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.11
    • /
    • pp.1259-1264
    • /
    • 1994
  • $\beta$-Sialon has been regarded as one of promising materials showing high strength, fracture toughness, corrosion resistence and wear resistence. The improvement of the fracture toughness and tribological properties of $\beta$-Sialon (Z=1) has been attempeted by fabricating the $\beta$-Sialon/ SiC whisker composite. Each of green body composed of following ingredients, i.e., Si3N4, AlN, Y2O3 nd SiC, respectively, was first fired at 178$0^{\circ}C$ for 3hrs in N2 atmosphere and then post-HIPed at 173$0^{\circ}C$ for 1 hr under 170 MPa for N2 gas pressure. The fracture toughness, flexural strength and tribological properties increased with increasing SiC whisker content, despite the reduction of the relative density and hardness. $\beta$-Sialon/15 vol% SiC whisker showed a significant enhancement of wear resistance compared to the monolithic $\beta$-Sialon. The addition of SiC whisker caused the reduction of the density and hardness, but induced the increment of wear resistance.

  • PDF

Effect of Plasma Spraying Parameter on Mechanical and Tribological Property of Cr$_2$O$_3$ Coating Layer on AZ9lD Commercial Magenesium Alloy (AZ9lD 상용 마그네슘합금에 코팅된 Cr$_2$O$_3$층의 기계적 및 내마모 특성에 미치는 플라즈마 용사조건의 효과)

  • 이수완;박종문;이명호;김진수
    • Journal of Surface Science and Engineering
    • /
    • v.30 no.6
    • /
    • pp.400-405
    • /
    • 1997
  • The experimental study has been performed to deposit to deposit chromia powder on magnssium alloy for tribological and mechanical properties. The optimal condition was obtained by changing the spray condition such as working distance and gun power. As ceramics was coated onto the a light metal such as Mg according to the weight reduection of the car engine block, it could acquire that the engine efficiency deu to the weight reduction and properties such as resistance to heat, as well as wear. Coating qualities are discussed with respect to hardness, tribologicalproperty, and microstructure. The tribological and mechanical properties are investigated by using the reciprocal configuration tribometer and microharduess tester. Wear mode is determined by observing the SEM morhpology of wear track and cross section view of wear track.

  • PDF

Tribological Properties of DLC film on Modified Surface by TiC Plasma Immersion Ion Implantation and Deposition (TiC 이온 주입 층에 증착된 DLC 박막의 트라이볼로지적 특성)

  • Yi, Jin-Woo;Kim, Jong-Kuk;Kim, Seock-Sam
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.956-960
    • /
    • 2004
  • Effects of ion implantation and deposition on the tribological properties of DLC film as a function of implanted energies and process times were investigated. TiC ions were implanted and deposited on the Si-wafer substrates followed by DLC coating using ion beam deposition method. In order to study tribological properties such as friction coefficient and behavior of DLC film on the modified surface as a function of implanted energies and process times, we used a ball-on-disc type apparatus in the atmospheric environment. From results of wear test, as the implanted energy was increased, the friction coefficient was more stable below 0.1.

  • PDF

Effects of Surface Texturing under Grease Lubrication (그리스 윤활 하에서 표면요철의 영향)

  • Kim, Sung-Gi;Song, Kuen-Chul;Kim, Sang-Beom;Chae, Young-Hun
    • Tribology and Lubricants
    • /
    • v.24 no.5
    • /
    • pp.234-240
    • /
    • 2008
  • It is well known that surface texturing improves the tribological properties of mechanical components for enhancing hydro-dynamic effect or serving as a micro reservoir. There are not, however, enough researches to reveal the effects of surface texturing on the tribological properties under grease lubrication which is used in lubricating many mechanical elements. In the present study, therefore, the effects of surface texturing on the tribological properties are investigated under grease lubrication based on an experimental approach. The results show that surface texturing decreases friction coefficient. It is found that the friction coefficient can be decreased by controlling the diameter and density of micro-dimple. The diameter of dimple is more effective under high load and low speed than otherwise. And, the density of dimple is effective under low load and high speed.

Improvement in Tribological Properties of Carbon Steel Sintered by Powder Metallurgy (분말 야금에 의해 소결된 강철의 트라이볼로지 특성 향상)

  • Choi, S.I.M.;Karimbaev, R.;Pyun, Y.S.;Amanov, A.
    • Tribology and Lubricants
    • /
    • v.36 no.4
    • /
    • pp.244-252
    • /
    • 2020
  • Materials manufactured by powder metallurgy (PM) are widely used in various applications such as water pump, shock absorber, and airplane components due to the reduction in the cost and weight. In this study, tribological properties of carbon steel subjected by surface treatment were investigated. The main purpose is to increase the strength and improve the tribological properties by reducing pores that formed by PM. Moreover, the surface treatment was carried out at room and high temperatures (RT and HT). The surface roughness of the untreated (NON) and treated (AFTER) samples was measured. It was found that the surface roughness was reduced after both the RT AFTER and HT AFTER compared to RT NON sample. The tribological properties of the samples were performed against bearing steel ball under dry conditions. The friction coefficient of the RT NON samples was reduced by 22% and 56% RT AFTER and HT AFTER, respectively. The wear volume of the RT NON sample was also reduced by 43% and 87% RT AFTER and HT AFTER, respectively. Tribocorrosion tests were also performed and it was found that the surface of the RT AFTER, HT AFTER samples was less corroded compared to RT NON sample. The HT AFTER sample demonstrated a relatively higher corrosion potential in comparison with the RT AFTER samples. Hence, it was confirmed that after surface modification the surface roughness and hardness of the samples were significantly improved resulting in improvement in tribological and tribocorrosion behaviors of PM carbon steel.