• Title/Summary/Keyword: Triblock copolymer

Search Result 95, Processing Time 0.018 seconds

Thermosensitive Sol-gel Phase Transition Behavior of Methoxy poly(ethylene glycol)-b-poly($\varepsilon$-caprolactone) Diblock Copolymers (메톡시 폴리(에틸렌 글리콜)-폴리($\varepsilon$-카프로락톤) 공중합체의 온도감응성 솔-젤 전이 거동)

  • 서광수;박종수;김문석;조선행;이해방;강길선
    • Polymer(Korea)
    • /
    • v.28 no.4
    • /
    • pp.344-351
    • /
    • 2004
  • Poly(ethylene glycol)-based diblock and triblock polyester copolymers stimulating to temperature were studied as injectable biomaterials in drug delivery system because of their nontoxicity, biocompatibility and biodegradability. We synthesized the diblock copolymers consisting of methoxy poly(ethylene glycol) (MPEG) (M$_{n}$=750 g/mole) and poly($\varepsilon$-caprolactone) (PCL) by ring opening polymerization of $\varepsilon$-CL with MPEG as an initiator in the presence of HCl . Et$_2$O. The aqueous solution of synthesized diblock copolymers represented sol phase at room temperature and a sol to gel phase transition as the temperature increased from room temperature to body temperature. To confirm the in vivo gel formation, we observed the formation of gel in the mice body after injection of 20 wt% aqueous solution of each block copolymer. After 2 months, we observed the maintenance of gel without dispersion in mice. In this study, we synthesized diblock copolymers exhibiting sol-gel phase transition and confirmed the feasibility as biomaterials of injectable implantation.n.

Nitrogen and Oxygen Sorption Behaviors of Ruthenium-Substituted SBA 15(Ru-SBA-15) (루테늄이 치환된 SBA-15(Ru-SBA-15)의 질소 및 산소 흡착 거동)

  • Seo, Yoon-Ah;Kim, Hyung Kook;Shin, Jeong Hun;Kim, Il;Ha, Chang-Sik
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.608-614
    • /
    • 2009
  • In this work, ruthenium substituted SBA-15's(Ru-SBA15's) of various Si/Ru ratios were prepared using a non-ionic triblock copolymer surfactant, $EO_{20}PO_{70}EO_{20}$, as template. We investigated the nitrogen or oxygen adsorption/desorption behaviors of the Ru-SBA-15's for their future applications as catalysts or selective adsorbents, etc. The pore size of the Ru-SBA-15's was determined by both the Barrett-Joyner-Halenda(BJH)($D_{BJH}$) and the Broekhoff-de Boer analysis with a Frenkel-Halsey-Hill isotherm(BdB-FFF) method($D_{BdB-FHH}$). The $D_{BJH}$ and $D_{BdB-FHH}$ of the Ru-SBA-15 having 50/1 ratio of Si/Ru were 3.9 nm and 4.7 nm, respectively. The transmission electron microscope(TEM) image of the Ru-SBA 15 of the Si/Ru mole ratio of 50 showed that the pore size is 4.7 nm, which is consistent with the $N_2$ adsorption results with the BdB-FHH method. The surface area of pores form oxygen adsorption/desorption isotherm was higher than that from the nitrogen adsorption/desorption isotherm by the Brunauer-Emmett-Teller(BET) method, which were respectively $612.7m^2/g$, and $573.3m^2/g$. X-ray diffraction(XRD) patterns and TEM analyses showed that the mesoporous materials possess well-ordered hexagonal arrays.

Photochromic Spiropyran-Functionalized Organic-Inorganic Hybrid Mesoporous Silica for Optochemical Gas Sensing (광화학적 가스 센싱을 위한 광변색 스피로피란 개질된 유기-무기 하이브리드 메조포러스 실리카)

  • Park, Sung Soo;Ha, Chang-Sik
    • Journal of Adhesion and Interface
    • /
    • v.17 no.4
    • /
    • pp.141-148
    • /
    • 2016
  • In this work, mesoporous silica (SBA-15) was synthesized via self-assembly process using triblock copolymer ($PEO_{20}PPO_{70}PEO_{20}$, P123) as template and tetraethyl orthosilicate (TEOS) as silica source under acidic condition. SBA-15 have high surface area ($704m^2g^{-1}$) and uniform pore size (8.4 nm) with well-ordered hexagonal mesostructure. Spiropyran-functionalized SBA-15 (Spiropyran-SBA-15) was synthesized via post-synthesis process using 3-(triethoxysilyl)propyl isocyanate (TESPI) and 1-(2-Hydroxyethyl)-3,3-dimethy-lindolino-6'-nitrobenzopyrylo-spiran (HDINS). Spiropyran-SBA-15 was produced with hexagonal array of mesopores without damage of mesostructre. Surface area and pore size of Spiropyran-SBA-15 were $651m^2g^{-1}$ and 8.0 nm, respectively. Optochemical properties of Spiropyran-SBA-15 was studied with chemical vapors such as EtOH, THF, $CHCl_3$, Acetone and HCl. Main peaks of photofluorescence of Spiropyran-SBA-15 exhibited blue shift in the range of 603.4~592.1 nm after exposure under EtOH, THF, $CHCl_3$, and Acetone vapors. Normalized peak intensities decreased in the range of 0.8~0.3. The main peak of photofluorescence of Spiropyran-SBA-15 showed significant blue shift of 592.1 nm after exposure under HCl vapor, while normalized peak intensity decreased to 0.1.

Soft-template Synthesis of Magnetically Separable Mesoporous Carbon (자성에 의해 분리 가능한 메조포러스 카본의 소프트 주형 합성)

  • Park, Sung Soo;Ha, Chang-Sik
    • Journal of Adhesion and Interface
    • /
    • v.18 no.2
    • /
    • pp.75-81
    • /
    • 2017
  • In this study, we synthesized mesoporous carbon (Carbonized Ni-FDU-15) containing nanoporous structures and magnetic nanoparticles. Carbonized Ni-FDU-15 was synthesized via evaporation-induced self-assembly (EISA) and direct carbonization by using a triblock copolymer (F127) as a structure-directing agent, a resol precursor as a carbon-pore wall forming material, and nickel (II) nitrate as a metal ion source. The mesoporous carbon has a well-ordered two-dimensional hexagonal structure. Meanwhile, nickel (Ni) metal and nickel oxide (NiO) were produced in the magnetic nanoparticles in the pore wall. The size of the nanoparticles was about 37 nm. The surface area, pore size and pore volume of Carbonized Ni-FDU-15 were $558m^2g^{-1}$, $22.5{\AA}$ and $0.5cm^3g^{-1}$, respectively. Carbonized Ni-FDU-15 was found to move in the direction of magnetic force when magnetic force was externally applied. The magnetic nanoparticle-bearing mesoporous carbons are expected to have high applicability in a wide variety of applications such as adsorption/separation, magnetic storage media, ferrofluid, magnetic resonance imaging (MRI) and drug targeting, etc.

Rare-Earth Metal Complex-Functionalized Mesoporous Silica for a Potential UV Sensor (잠재적인 UV 센서를 위한 희토류 금속착물이 기능화된 메조다공성 실리카)

  • Sung Soo Park;Mi-Ra Kim;Weontae Oh;Yedam Kim;Yeeun Lee;Youngeon Lee;Kangbeom Ha;Dojun Jung
    • Journal of Adhesion and Interface
    • /
    • v.24 no.4
    • /
    • pp.136-142
    • /
    • 2023
  • In this study, TEOS was used as a silica source, and a triblock copolymer (P123) was used as a template to produce mesoporous silica with a well-ordered hexagonal mesopore array through a self-assembly method and hydrothermal process under acidic condition. (Surfactant-extracted SBA-15). Surfactant-extracted SBA-15 showed the particle shape of a short rod with a size of approximately 980 nm. The surface area and pore diameter were 730 m2g-1 and 70.8 Å, respectively. Meanwhile, aminosilane (3-aminopropyltriethoxysilane, APTES) was grafted into the mesopores using a post-synthesis method. Mesoporous silica (APTES-SBA-15) modified with aminosilane had a well-ordered pore structure (p6mm) and well-maintained the particle shape of short rods. The surface area and pore diameter of APTES-SBA-15 decreased to 350 m2g-1 and 60.7 Å, respectively. APTES-modified mesoporous silica was treated with a solution of rare earth metal ions (Eu3+, Tb3+) to synthesize a mesoporous silica material in which rare earth metal complexes were introduced into the mesopores. (Eu/APTES-SBA-15, Tb/APTES-SBA-15) These materials exhibited characteristic photoluminescence spectra by λex=250 nm. (5D47F5 (543.5 nm), 5D47F4 (583.5 nm), 5D47F3 (620.2 nm) transitions for Tb/APTES-SBA-15; 5D07F0 (577.7 nm), 5D07F1 (592.0 nm), 5D07F2 (614.9 nm), 5D07F3 (650.3 nm) and 5D07F4 (698.5 nm) transitions for Eu/APTES-SBA-15)