Browse > Article
http://dx.doi.org/10.17702/jai.2016.17.4.141

Photochromic Spiropyran-Functionalized Organic-Inorganic Hybrid Mesoporous Silica for Optochemical Gas Sensing  

Park, Sung Soo (Department of Polymer Science and Engineering, Pusan National University)
Ha, Chang-Sik (Department of Polymer Science and Engineering, Pusan National University)
Publication Information
Journal of Adhesion and Interface / v.17, no.4, 2016 , pp. 141-148 More about this Journal
Abstract
In this work, mesoporous silica (SBA-15) was synthesized via self-assembly process using triblock copolymer ($PEO_{20}PPO_{70}PEO_{20}$, P123) as template and tetraethyl orthosilicate (TEOS) as silica source under acidic condition. SBA-15 have high surface area ($704m^2g^{-1}$) and uniform pore size (8.4 nm) with well-ordered hexagonal mesostructure. Spiropyran-functionalized SBA-15 (Spiropyran-SBA-15) was synthesized via post-synthesis process using 3-(triethoxysilyl)propyl isocyanate (TESPI) and 1-(2-Hydroxyethyl)-3,3-dimethy-lindolino-6'-nitrobenzopyrylo-spiran (HDINS). Spiropyran-SBA-15 was produced with hexagonal array of mesopores without damage of mesostructre. Surface area and pore size of Spiropyran-SBA-15 were $651m^2g^{-1}$ and 8.0 nm, respectively. Optochemical properties of Spiropyran-SBA-15 was studied with chemical vapors such as EtOH, THF, $CHCl_3$, Acetone and HCl. Main peaks of photofluorescence of Spiropyran-SBA-15 exhibited blue shift in the range of 603.4~592.1 nm after exposure under EtOH, THF, $CHCl_3$, and Acetone vapors. Normalized peak intensities decreased in the range of 0.8~0.3. The main peak of photofluorescence of Spiropyran-SBA-15 showed significant blue shift of 592.1 nm after exposure under HCl vapor, while normalized peak intensity decreased to 0.1.
Keywords
Mesoporous silica; Post-synthesis; Spiropyran; Optochemical gas sensing;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 T. A. Fayed, M. H. Shaaban, M. N. El‑Nahass, and F. M. Hassan, Inter. J. Chem. and App. Bio. Sci., 1(2), S74 (2015).
2 S. Alberti, G. J. A. A. Soler-Illia, and O. Azzaroni, Chem. Commun., 51, 6050 (2015).   DOI
3 C. T. Burns, S. Y. Choi, M. L. Dietz, and M. A. Firestone, Separ. Sci. and Tech., 43, 2503 (2008).   DOI
4 C. Reichardt and Solvatochromic, Chem. Rev., 94, 2319 (1994).   DOI
5 I. Shimizu, H. Kokado, and E. Inoue, Bull. Chem. Soc. Jpn., 42, 1730 (1969).   DOI
6 A. Yamano and H. Kozuka, J. Phys. Chem. B, 113, 5769 (2009).
7 M.-Q. Zhu, L. Zhu, J. J. Han, W. Wuwei, J. K. Hurst, and A. D. Q. Li, J. Am. Chem. Soc., 128(13), 4303 (2006).   DOI
8 B. Lv, Z. Wu, C. Ji, W. Yang, D. Yan, and M. Yi, J. Mater. Chem. C, 3, 8519 (2015).
9 E. Berman, R. E. Fox, and F. D. Thomson, J. Am. Chem. Soc., 81, 5605 (1959).   DOI
10 C. Sanchez, B. Lebeau, F. Chaput, and J.-P. Boilot, Adv. Mater., 15, 1969 (2003).   DOI
11 M.-S. Wang, G. Xu, Z.-J. Zhang, and G.-C. Guo, Chem. Commun., 46, 361 (2010).   DOI
12 A. S. Kholmanskii and K. M. Dyumaev, Russ. Chem. Rev., 56, 136 (1987).   DOI
13 J. Allouche, A. L. Beulze, J.-C. Dupin, J.-B. Ledeuil, S. Blanc, and D. Gonbeau, J. Mater. Chem., 20, 9370 (2010).   DOI
14 J. B. Flannery Jr., J. Am. Chem. Soc., 90, 5660 (1968).   DOI
15 N. W. Tyer Jr. and R. S. Becker, J. Am. Chem. Soc., 92, 1295 (1970).   DOI
16 S.-R. Keum, M.-S. Hur, P. M. Kazmaier, and E. Buncel, Can. J. Chem., 69, 1940 (1991).   DOI
17 A. K. Chibisov and H. Gorner, Chem. Phys., 237, 425 (1998).   DOI
18 D. Levy, S. Einhorn, and D. Avnir, J. Non-Cryst. Solids, 113, 137 (1989).   DOI
19 G. Wirnsberger, B. J. Scott, B. F. Chmelka, and G. D. Stucky, Adv. Mater., 12, 1450 (2000).   DOI
20 A. Leaustic, A. Dupont, P. Yu, and R. Clement, New J. Chem., 25, 1297 (2001).   DOI
21 N. Andersson, P. Alberius, J. Örtegren, M. Lindgren, and L. Bergstrom, J. Mater. Chem., 15, 3507 (2005).   DOI
22 T. Suzuki, F.-T. Lin, S. Priyadashy, and S. G. Weber, Chem. Commun., 24, 2685 (1998).
23 D. Y. Hur and E. J. Shin, Bull. Korean Chem. Soc., 36, 104 (2015).   DOI
24 B. Schaudel, C. Guermeur, C. Sanchez, K. Nakatani, and J. A. Delaire, J. Mater. Chem., 7, 61 (1997).   DOI
25 I. Casades, M. Alvaro, H. Garcia, and M. N. Pillai, Photochem. Photobiol. Sci., 1, 219 (2002).   DOI
26 L. Chen, J. Wu, C. Schmuck, and H. Tian, Chem. Commun., 50, 6443, (2014).   DOI
27 Y.-S. Nam, I. Y. O. Yarimaga, I. S. Park, D.-H. Park, S. Song, J.-M. Kim, and C. W. Lee, Chem. Commun., 50, 4251 (2014).   DOI
28 M. E. Genovese, A. Athanassiou, and D. Fragouli, J. Mater. Chem. A, 3, 22441 (2015).   DOI
29 F. Khakzad, A. R. Mahdavian, H. Salehi-Mobarakeh, A. R. Shirin-Abadi, and M. Cunningham, Polymer, 101, 274 (2016).   DOI
30 S. Wan, Y. Zheng, J. Shen, W. Yang, and M. Yin, ACS Appl. Mater. Interfaces, 6, 19515 (2014).   DOI
31 Q.-Hua Y. L. Fan, W.-H. Chan, A. W. M. Lee, and S. Shuang, RSC Adv., 3, 15762 (2013).   DOI
32 S. Scarmagnani, Z. Walsh, C. Slater, N. Alhashimy, B. Paull, M. Mack, and D. Diamond, J. Mater. Chem., 18, 5063 (2008).   DOI
33 Y. Shiraishi, Y. Matsunaga, and T. Hirai, Chem. Commun., 48, 5485 (2012).   DOI
34 Y. Shiraishi, S. Sumiya, and T. Hirai, Chem. Commun., 47, 4953 (2011).   DOI
35 J. S. Beck, C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T.-W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, and J. L. Schlenker, J. Am. Chem. Soc., 114, 10834 (1992).   DOI
36 C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, Nature, 359, 710 (1992).   DOI
37 D. Y. Zhao, J. L. Feng, Q. S. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, and G. D. Stucky, Science, 279, 548 (1998).   DOI
38 X. S. Zhao, G. Q. (Max) Lu, and G. J. Millar, Ind. Eng. Chem. Res., 35, 2075 (1996).   DOI
39 C. Liang, Z. Li, and S. Dai, Angew. Chem. Int. Ed., 47, 3696 (2008).   DOI
40 G. J. de A. A. Soler-Illiaa, E. L. Crepaldia, D. Grossoa, and C. Sanchez, Current Opinion in Colloid and Inter. Science, 8, 109 (2003).   DOI
41 S.-H. Wu, C.-Y. Mou, and H.-P. Lin, Chem. Soc. Rev., 42, 3862 (2013).   DOI
42 D. E. De Vos, M. Dams, B. F. Sels, and P. A. Jacobs, Chem. Rev., 102, 3615 (2002).   DOI
43 S. S. Park and C.-S. Ha, The Chemical Record, 6, 32 (2006).   DOI
44 F. Hoffmann, M. Cornelius, J. Morell, and M. Froba, Angew. Chem. Int. Ed., 45, 3216 (2006).   DOI
45 S. S. Park, M. S. Moorthy, and C.-S. Ha, NPG Asia Materials, 6, 1 (2014).
46 K. Ariga, A. Vinu, J. P. Hill, and T. Mori, Coord. Chem. Reviews, 251, 2562 (2007).   DOI
47 A. Walcarius and L. Mercier, J. Mater. Chem., 20, 4478 (2010).   DOI
48 Y.-W. Yang, Med. Chem. Commun., 2, 1033 (2011).   DOI
49 P. Yang, S. Gaib, and J. Lin, Chem. Soc. Rev., 41, 3679 (2012).   DOI
50 Z. Tao, RSC Adv., 4, 18961 (2014).   DOI
51 M. Colilla, B. Gonzaleza, and M. Vallet-Regi, Biomater. Sci., 1, 114 (2013).   DOI
52 A. Popat, S. B. Hartono, F. Stahr, J. Liu, S. Z. Qiao, and G. Q. (Max) Lu, Nanoscale, 3, 2801 (2011).   DOI
53 T. Wagner, S. Haffer, C. Weinberger, D. Klaus, and M. Tiemann, Chem. Soc. Rev., 42, 4036 (2013).   DOI