• Title/Summary/Keyword: Triaxiality

Search Result 72, Processing Time 0.023 seconds

Effect of Crack Tip Constraint on the Fracture Resistance Curve in CT Specimen with Same Thickness (동일두께의 CT 시편에서 구속효과가 파괴저항곡선에 미치는 영향)

  • Jo, Yeon-Je;Jang, Yun-Seok;Seok, Chang-Seong;Kim, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.2
    • /
    • pp.529-539
    • /
    • 1996
  • Fracture resistance(J-R) curves, which are used for elastic-plastic fracture mechanics analyses, are known to be dependent on the specimen geometry. The objective of this paper is to investigate the effect of crack tip constraint an the J-R curves in CT specimens. Fracture toughness tests on CT specimens with varying planform size were performed and test results showed that the J-R curves were increased with an increase in the planform size. Finite element analysis were also performed and the numerical results showed that this experimental phenomenon was probably due to the relaxation of crack tip constraint resulting from the stress triaxiality.

Failure Mechanism of Metal Matrix Composites Subject to Transverse Loading (횡방향 하중을 받는 금속모재 복합재료의 파손구조)

  • Ham, Jong-Ho;Lee, Hyeong-Il;Jo, Jong-Du
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1456-1469
    • /
    • 2000
  • Mechanical behaviors of uniaxially fiber-reinforced metal matrix composites under transverse loading conditions were studied at room and elevated temperatures. A mono-filament composite was selecte d as a representative analysis model with perfectly bonded fiber/matrix interface assumption. The elastic-plastic and visco-plastic models were investigated by both theoretical and numerical methods. The product of triaxiality factor and effective strain as well as stress components and strain energy was obtained as a function of location to estimate the failure sites in fiber-reinforced metal matrix composite. Results showed that fiber/ matrix interfacial debond plays a key role for local failure at the room temperature, while void creation and growth in addition to the interfacial debond are major concerns at the elevated temperature. It was also shown that there would be an optimal diameter of fiber for the strong fiber-reinforced metal matrix composite.

Specimen Thickness and Crack Depth Effects on J Testing and Crack Tip Constraint for Non-standard Specimen (시편두께 및 균열깊이 영향을 고려한 비표준시편의 J 시험법 및 구속효과의 정량화)

  • Kim, Jin-Su;Cho, Soo-Man;Kim, Yun-Jae;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1531-1538
    • /
    • 2003
  • This paper compiles solutions of plastic $\eta$ factors and crack tip stress triaxialites for standard and nonstandard fracture toughness testing specimens, via detailed three-dimensional (3-D) finite element (FE) analyses. Fracture toughness testing specimens include a middle cracked tension (M(T)) specimen, SE(B), single-edge cracked bar in tension (SE(T)) and C(T) specimen. The ligament-to-thickness ratio of the specimen is systematically varied. It is found that the use of the CMOD overall provides more robust experimental J estimation than that of the LLD, for all cases considered in the present work. Moreover, the J estimation based on the load-CMOD record is shown to be insensitive to the specimen thickness, and thus can be used for testing specimen with any thickness. The effects of in-plane and out-of-plane constraint on the crack tip stress triaxiality are also quantified, so that when experimental J value is estimated according to the procedure recommended in this paper, the corresponding crack tip stress triaxiality can be estimated. Moreover, it is found that the out-of-plane constraint effect is related to the in-plane constraint effect.

ULTRAVIOLET ISOPHOTE SHAPES OF NEARBY ELLIPTICAL GALAXIES AND SPIRAL BULGES

  • SOHN YOUNG-JONG
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.2
    • /
    • pp.59-66
    • /
    • 2001
  • In this paper, we investigate the correlation between the radial ultraviolet color distribution and the shapes of the ultraviolet isophote for elliptical galaxies (M32, NGC 1399) and spiral bulges (of M31, M81) by using their archival UIT images. For M31, M81, and NGC 1399, the radial ultraviolet color distributions show a two-component trend; as the distance from the galactic center increase the color becomes redder in the inner region while it becomes bluer in the outer region. On the other hand, the color of M32 continues to become bluer with the increasing galactocentric distance. We also find, unlike the optical/IR images, significant variations of the position angle and the ellipticity in the ultraviolet isophotes of M31, M81, and NGC 1399 through the inner regions. For M32, the variation is significant in the outer region. Since these variation implies the triaxiality of their intrinsic shapes, we suggest that the early-type galaxies and spiral bulges with a radial color gradient in ultraviolet tend to have a triaxiality. On the other hand, the shape parameter characterized by the fourth order cosine Fourier coefficient of the isophote, a(4)/a, indicates that the systematic deviations of the ultraviolet isophotes of the four galaxies are smaller than $\~0.2\%$ in units of the semi-major axis. The latter result implies that the ultraviolet isophotes of the galaxies have a pure elliptical shape rather than the boxy or disky shapes. Therefore, there is no clear evidence of correlation between the radial ultra-violet color gradient and the boxy/disky shapes of isophotes.

  • PDF

Ductile Failure Analysis of Defective API X65 Pipes Based on Stress-Modified Fracture Strain Criterion (파괴변형률모델에 기초한 결함이 존재하는 API X65 배관의 연성파괴 해석)

  • Oh, Chang-Kyun;Baek, Jong-Hyun;Kim, Young-Pyo;Kim, Woo-Sik;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.9 s.252
    • /
    • pp.1086-1093
    • /
    • 2006
  • A local failure criterion for the API X65 steel is applied to predict ductile failure of full-scale API X65 pipes with simulated corrosion and gouge defects under internal pressure. The local failure criterion is the stress-modified fracture strain for the API X65 steel as a function of the stress triaxiality (defined by the ratio of the hydrostatic stress to the effective stress). Based on detailed FE analyses with the proposed local failure criteria, burst pressures of defective pipes are estimated and compared with experimental data. The predicted burst pressures are in good agreement with experimental data. Noting that an assessment equation against the gouge defect is not yet available, parametric study is performed, from which a simple equation is proposed to predict burst pressure fur API X65 pipes with gouge defects.

Evaluation of Notch Location Effect on Ductile Crack Initiation at Strength Mismatched Joints by Finite Element Method and Ultrasonic-Mechatronics System (유한요소법과 초음파 메카트로닉스 시스템에 의한 강도적 불균질 이음부의 노치위치에 따른 균열발생 한계 조건)

  • An Gyu-Baek;Bang Han-Sur;Toyoda Masao
    • Journal of Welding and Joining
    • /
    • v.23 no.6
    • /
    • pp.87-92
    • /
    • 2005
  • It has been well hewn that ductile fracture of steels is accelerated by triaxial stresses. The characteristics of ductile crack initiation in steels are evaluated quantitatively using a two-parameters criterion based on equivalent plastic strain and stress triaxiality. The present study focuses on the effects of strength mismatch, which can elevate plastic constraint due to heterogeneous plastic straining, on the critical condition for ductile fracture initiation usinga two-parameter criterion. Fracture initiation testing has been conducted under static loading using notched round bar specimens which had different notch locations. This study provides the fundamental clarification of the effect of strength mismatching and effect of notch location on the critical condition to ductile crack initiation from notch root using fuite element method and ultrasonic-mechatronics system. The critical condition of ductile crack initiation from notch root of strength mismatched tensile specimens under static loading appeared to be almost the same as those of homogeneous tensile specimens with circumferential sharp notch specimen. Also, the effect of notch location in mismatched specimens was estimated using finite element(FE) analyses.

Seismic behavior of Q690 circular HCFTST columns under constant axial loading and reversed cyclic lateral loading

  • Wang, Jiantao;Sun, Qing
    • Steel and Composite Structures
    • /
    • v.32 no.2
    • /
    • pp.199-212
    • /
    • 2019
  • This paper presents an investigation on seismic behavior of out-of-code Q690 circular high-strength concrete-filled thin-walled steel tubular (HCFTST) columns made up of high-strength (HS) steel tubes (yield strength $f_y{\geq}690MPa$). Eight Q690 circular HCFTST columns with various diameter-to-thickness (D/t) ratios, concrete cylinder compressive strengths ($f_c$) and axial compression ratios (n) were tested under the constant axial loading and reversed cyclic lateral loading. The obtained lateral load-displacement hysteretic curves, energy dissipation, skeleton curves and ductility, and stiffness degradation were analyzed in detail to reflect the influences of tested parameters. Subsequently, a simplified shear strength model was derived and validated by the test results. Finally, a finite element analysis (FEA) model incorporating a stress triaxiality dependent fracture criterion was established to simulate the seismic behavior. The systematic investigation indicates the following: compared to the D/t ratio and axial compression ratio, improving the concrete compressive strength (e.g., the HS thin-walled steel tube filled with HS concrete) had a slight influence on the ductility but an obvious enhancement of energy dissipation and peak load; the simplified shear strength model based on truss mechanism accurately predicted the shear-resisting capacity; and the established FEA model incorporating steel fracture criterion simulated well the seismic behavior (e.g., hysteretic curve, local buckling and fracture), which can be applied to the seismic analysis and design of Q690 circular HCFTST columns.

Load Fidelity Improvement of Piecewise Integrated Composite Beam by Irregular Arrangement of Reference Points (참조점의 불규칙적 배치를 통한 PIC보의 하중 충실도 향상에 관한 연구)

  • Ham, Seok Woo;Cho, Jae Ung;Cheon, Seong S.
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.216-221
    • /
    • 2019
  • Piecewise integrated composite (PIC) beam has different stacking sequences for several regions with respect to their superior load-resisting capabilities. On the interest of current research is to improve bending characteristics of PIC beam, with assigning specific stacking sequence to a specific region with the help of machine learning techniques. 240 elements of from the FE model were chosen to be reference points. Preliminary FE analysis revealed triaxialities at those regularly distributed reference points to obtain learning data creation of machine learning. Triaxiality values catagorise the type of loading i.e. tension, compression or shear. Machine learning model was formulated by learning data as well as hyperparameters and proper load fidelity was suggested by tuned values of hyperparameters, however, comparatively higher nonlinearity intensive region, such as side face of the beam showed poor load fidelity. Therefore, irregular distribution of reference points, i.e., dense reference points were distributed in the severe changes of loading, on the contrary, coarse distribution for rare changes of loading, was prepared for machine learning model. FE model with irregularly distributed reference points showed better load fidelity compared to the results from the model with regular distribution of reference points.

Punching Fracture Simulations of Circular Unstiffened Steel Plates using Three-dimensional Fracture Surface (3차원 파단 변형률 평면을 이용한 비보강 원판의 펀칭 파단 시뮬레이션)

  • Park, Sung-Ju;Lee, Kangsu;Choung, Joonmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.474-483
    • /
    • 2016
  • Accidental events such as collisions, groundings, and hydrocarbon explosions in marine structures can cause catastrophic damage. Thus, it is extremely important to predict the extent of such damage, which determines the total amount of oil spills and the residual hull girder strength. Punching fracture tests were conducted by Choung (2009b), where various sizes of indenters and circular unstiffened steel plates with different thicknesses were used to quasi-statically realize damage extents. A three-dimensional fracture strain surface was developed based on a reference (Choung et al., 2015b), where the average stress triaxiality and average normalized Lode angle were used as the parameters governing the fracture of ductile steels. In this study, new numerical analyses were performed using very fine axisymmetric elements in combination with an Abaqus user-subroutine to implement the three-dimensional fracture strain surface. Conventional numerical analyses were also conducted for the tests to identify the best fit fracture strain values by changing the fracture strains. Based on the phenomenon of the average normalized Lode angle starting out positive and then becoming slightly negative, it was inferred that the shear stress primarily dominates in determining the fractures locations, with a partial contribution from the compressive stress. It should be stated that the three-dimensional fracture surface effectively predicted at least the shear stress-dominant fracture behavior of a mild steel.

Ductile Fracture Predictions of High Strength Steel (EH36) using Linear and Non-Linear Damage Evolution Models (선형 및 비선형 손상 발전 모델을 이용한 고장력강(EH36)의 연성 파단 예측)

  • Park, Sung-Ju;Park, Byoungjae;Choung, Joonmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.288-298
    • /
    • 2017
  • A study of the damage evolution laws for ductile materials was carried out to predict the ductile fracture behavior of a marine structural steel (EH36). We conducted proportional and non-proportional stress tests in the experiments. The existing 3-D fracture strain surface was newly calibrated using two fracture parameters: the average stress triaxiality and average normalized load angle taken from the proportional tests. Linear and non-linear damage evolution models were taken into account in this study. A damage exponent of 3.0 for the non-linear damage model was determined based on a simple optimization technique, for which proportional and non-proportional stress tests were simultaneously used. We verified the validity of the three fracture models: the newly calibrated fracture strain model, linear damage evolution model, and non-linear damage evolution model for the tensile tests of the asymmetric notch specimens. Because the stress evolution pattern for the verification tests remained at mode I in terms of the linear elastic fracture mechanics, the three models did not show significant differences in their fracture initiation predictions.