• Title/Summary/Keyword: Triaxial tests

Search Result 556, Processing Time 0.021 seconds

Evaluation of Alternative Approaches for Nonlinear Cross-anisotropic Parameters on the Small Strain Model based on Triaxial Test Results (삼축 시험을 이용한 미소 변형 모델의 비선형 직교 이방 계수에 대한 평가 방법 고찰)

  • Chun, Sung-Ho;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.286-300
    • /
    • 2006
  • Nonlinear cross-anisotropic properties of soil is critical for exact numerical simulation. Theoretically, initial cross-anisotropic properties can be evaluated from triaxial tests with bender element tests, and nonlinear cross-anisotropic properties over initial strain level cannot be evaluated from triaxial tests. In this study, a supposed condition among nonlinear cross-anisotropic properties is suggested to calculate nonlinear cross-anisotropic properties from triaxial tests. Maximum strain and incremental strain energy are applied to combine triaxial test results and theoretical normalized shear modulus curve, respectively Based on combined results, nonlinear cross-anisotropic properties are calculated. Numerical simulation for triaxial tests Is carried out to verify the applicability of the supposed condition with calculated cross-anisotropic properties and simplified nonlinear cross-anisotropic model.

  • PDF

Strength Characteristics of Decomposed Granite Soil in Cubical Triaxial Test (입방체형 삼축시험에 의한 다짐화강토의 전단강도 특성)

  • 정진섭;김찬기;박승해;김기황
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.6
    • /
    • pp.64-73
    • /
    • 1996
  • The three-dimensional strength behavior of compacted decomposed granite soil was studied using cubical triaxial tests with independent control of the three principal stresses. All specimens were loaded under conditions of principal stress direction fixed and aligned with the directions of compacted plane. For comparable test conditions, the major principal strain and volume strain to failure were smallest when the major principal stress acted perpendicular to the compacted plane. The opposite extremes were obtained when the major principal stress acted parallel to the compacted plane. In cubical triaxial tests with same b values and with ${\theta}$ values in one of three sectors of the octahedral plane, independent of the range of ${\theta}$, higher friction angles are obtained in tests with b greater than in triaxial compression tests in which b 0.0, Comparison between the results of the drained cubical triaxial tests on lksan compacted decomposed granite soil and the cross section of the Mohr-Coulomb failure surface as well as the cross section of the Mohr-Coulomb failure surface were made. Lade's isotropic failure criterion based on vertical specimens overestimates the strengths for tests performed with values of 0 between 90˚ and 1 50˚ the Mohr-Coulomb criterion generally underestimates the strengths of tests performed with values of ${\theta}$ between $0^{\circ}$ and $180^{\circ}$ except around the $120^{\circ}$.

  • PDF

Stress- Strain Behavior Characteristics of Single Work Hardening Model Dependant on the Stress Path (응력경도에 따른 단일항복면구성모델의 응력-변형률 거동 특성)

  • 정진섭;김찬기;박을축
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.3
    • /
    • pp.70-81
    • /
    • 1996
  • Solutions of geotechnical engineering problems require predictions of deformation and stresses during various stages of loading. Powerful numerical methods are available to make such predictions even for complicated problems. To get accurate results, realistic stress-strain relationships of soils are dependent on a number of factors such as soil type, density, stress level and stress path. Attempts are continuously being made to develope analytical models for soils incorporating all such factors. Isotropic compression-expansion test and a series of drained conventional triaxial tests with several stress path for Baekma river sand were performed to investigate stress-strain and volume change characteristics of Lade's single work hardening model dependant on the stress path. In order to predicted of stress-strain and volumetric strain behavior were determined the values of parameters for the mode by the computer program based on the regression analysis. Predicted stress-strain behavior of triaxial compression tests and optional stress path tests for increasing confining pressure with parameters obtained conventional triaxial compression tests agreed with several test results but the prediction results for decreasing confining pressure reduced triaxial compression tests make a little difference with test results.

  • PDF

Taming of large diameter triaxial setup

  • Nair, Asha M.;Madhavi Latha, G.
    • Geomechanics and Engineering
    • /
    • v.4 no.4
    • /
    • pp.251-262
    • /
    • 2012
  • Triaxial tests are essential to estimate the shear strength properties of the soil or rock. Normally triaxial tests are carried out on samples of 38 mm diameter and 76 mm height. Granular materials, predominantly used in base/sub-base construction of pavements or in railways have size range of 60-75 mm. Determination of shear strength parameters of those materials can be made possible only through triaxial tests on large diameter samples. This paper describes a large diameter cyclic triaxial testing facility set up in the Geotechnical Engineering lab of Indian Institute of Science. This setup consists of 100 kN capacity dynamic loading frame, which facilitates testing of samples of up to 300 mm diameter and 600 mm height. The loading ram can be actuated up to a maximum frequency of 10 Hz, with maximum amplitude of 100 mm. The setup is capable of carrying out static as well as dynamic triaxial tests under isotropic, anisotropic conditions with a maximum confining pressure of 1 MPa. Working with this setup is a difficult task because of the size of the sample. In this paper, a detailed discussion on the various problems encountered during the initial testing using the equipment, the ideas and solutions adopted to solve them are presented. Pilot experiments on granular sub-base material of 53 mm down size are also presented.

Shear and CBR Characteristics of Dredge Soil-Bottom Ash-Waste Tire Powder-Mixed Lightweight Soil (준설토-저회-폐타이어 혼합경량토의 전단 및 CBR 특성)

  • Kim, Yun-Tae;Kang, Hyo-Sub
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.34-39
    • /
    • 2011
  • This study investigated the shear and CBR characteristics of dredge soil-bottom ash-waste tire powder-mixed lightweight soil, which was developed to recycle dredged soil, bottom ash, and waste tire powder. Test specimens were prepared with various contents of waste tire powder ranging from 0 to 100% at 50% intervals by the weight of the dry dredged soil. Several series of triaxial compression tests and CBR tests were conducted. The shear strength characteristics of the lightweight soil were compared using two different shear tests (triaxial compression test and direct shear test). The experimental results indicated that the internal friction angle of the lightweight soil obtained by the direct shear tests was greater than that by the triaxial shear tests. However, the cohesion value obtained by the triaxial shear tests was greater than that by the direct shear tests. The CBR value of the lightweight soil decreased from 35% to 15% as waste tire powder content increased.

A Prediction of the Behavior in Normally Consolidated Clay with Application of Isotropic Single Hardening Constitutive Model (등방단일경화구성모델에 의한 정규압밀점토의 거동 예측)

  • 홍원표;남정만
    • Geotechnical Engineering
    • /
    • v.12 no.2
    • /
    • pp.9-18
    • /
    • 1996
  • The results of a series of triaxial compression tests on remolded normally consolidated clay are compared with the predictions .by the isotropic single -hardening constitutive model, which incorporates eleven parameters. The parameters can be determined from undrained triaxial compression tests on isotropically consolidated specimens of remolded clay. The model with the determined parameters is applied to predict the stress-strain and pore pressure behaviors for untrained triaxial compresion tests on anisotropically consolidated specimens. Also the model is utilized to predict the stress strain and voltmetric strain behavior for drained triaxial compression tests on both isotropic and anisotropic specimens. The predicted response agrees well with the measured behavior for undrained triaxial compression tests on not only isotropically but also anisotroically but also anisotropically consolidated specimens. The initial volumetric strain is, however, predicted to be less than the measured value from drained triaxial compression tests, while the predicted volumetric strain close to failure is greater than the measured value. Nevertheless, it may be stated generally that overall acceptable predictions are produced. Therefore, the results of this study indicate that the applicability of the model on prediction of the behavior of normally consolidated clay is achieved sufficiently.

  • PDF

Multi -Stage Triaxial Test under Constant Confining Pressure (일정구속압력 다단계삼축압축시험)

  • Kim, Sang-Gyu;Kim, Hyeon-Tae;Kim, Ho-Il
    • Geotechnical Engineering
    • /
    • v.9 no.2
    • /
    • pp.27-40
    • /
    • 1993
  • This paper proposes a new procedure carrying out a series of consolidated-undrained triaxial tests with a specimen. In this procedure high confining pressure applied to the specimen keeps constant during the test and each stage of consolidation can be controlled by partial drainage. With this procedure the test time is remarkably reduced by performing a series of triaxial tests with a single specimen. In order to verify the appliesbility of the procedure, standard triaxial compression tests and conventional multi -stage triaxial testy are performed for both undisturbed and disturbed samples and the results are compared with those of the proposed procedure. The comparison shows that strength parameters determined by the proposed procedure are well agreed with those of the other tests and thus it can be said that the procedure is very effective and practical in determining strength parameters.

  • PDF

Evaluation of the q-w Curve on Rock-Socketed Drilled Shafts by Triaxial Compression Tests (삼축압축시험을 통한 암반에 근입된 현장타설말뚝의 선단 하중전이곡선 산정)

  • Kim, Tae-Hyung;Kim, Yong-Min;Jeong, Sang-Seom
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.455-465
    • /
    • 2008
  • In this study, the load distribution and deformation of rock-socketed drilled shafts subjected to axial load are investigated based on small scale model tests. In order to analyze the effects of major influencing factors of end bearing capacity, Hoek-cell triaxial tests were performed. From the test results, it was found that the initial slope of end bearing load transfer (q-w) curve was highly dependent on rock mass modulus and pile diameter, while the ultimate unit toe resistance ($q_{max}$) was influenced by rock mass modulus and the spacing of discontinuities. End bearing load transfer function of drilled shafts socketed in rock was proposed based on the Hoek-cell triaxial test results and the field loading tests which were performed on granite and gneiss in South Korea. Through the comparison with pile load tests, it is found that the load-transfer curve by the present study is in good agreement with the general trend observed by field loading tests, and thus represents a significant improvement in the prediction of load transfer of drilled shaft.

  • PDF

Triaxial Compressive Behaviour of Unsaturated Silt under Different Drainage Conditions (다양한 경계조건에서의 불포화 실트의 삼축압축 거동)

  • Kim, Young-Seok;Oka, Fusao
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.998-1003
    • /
    • 2008
  • It has been recognized unsaturated soil behaviour playing an important role in geomechanics. Up to now, only a few experimental data are available for the technical difficulties related to both volume changes and suction measurements. In this study, the volume changes of unsaturated compacted silty soil were monitored with proximeter (i.e. non-contactable transducer) during various triaxial compression tests, which gave a realistic estimation in the volume changes of unsaturated soil sample. Various triaxial compression tests for unsaturated soil under different drainage conditions are carried out. The behaviour of the pore pressure, namely, the pore-air pressure and the pore-water pressure, and matric suction during the shearing tests are investigated. The experimental results have revealed that the mechanical behaviour of unsaturated soil can be significantly affected by the matric suction.

  • PDF

Comparison of Shear Strength of Coarse Materials Measured in Large Direct Shear and Large Triaxial Shear Tests (대형 직접전단시험과 대형 삼축압축시험에 의한 조립재료의 전단강도 비교)

  • Seo, Minwoo;Kim, Bumjoo;Ha, Iksoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.1
    • /
    • pp.25-34
    • /
    • 2009
  • Since the particle sizes of the coarse materials used in dam or harbor constructions are much larger than those of typical soils, it is desirable that large shear testing apparatuses are used when performing shear tests on the coarse materials to obtain as accurate results as possible. Two large-scale shear testing apparatuses, large direct shear testing apparatus and large triaxial shear testing apparatus, are commonly used. Currently in Korea, however, there have not been many cases in which shear tests were done using the large apparatus due to mainly difficulties in manufacturing, diffusing, and operating them. In present study, both large direct shear tests and large triaxial shear tests were performed on the coarse materials, which are used as dam fill materials, for 6 test cases in which particle sizes, specimen sizes, vertical pressure (confining pressure) conditions were little different, and then, the shear strength characteristics of the materials were compared with the two different shear tests. The test results showed that, by the Mohr-Coulomb failure criterion, overall the shear strength obtained by the large direct shear tests was larger than that by the large triaxial shear tests. Moreover, the shear strength under the normal stress of 1,000 kPa was about 10 to 70% larger for the large direct shear tests than for the large triaxial shear tests, revealing the larger differences in the coarse materials, compared to typical soils.

  • PDF