• Title/Summary/Keyword: Triaxial stress

Search Result 489, Processing Time 0.025 seconds

A study on the shear strength considering matric suction for an unsaturated soil (모관흡수력을 고려한 불포화토의 전단강도에 대한 연구)

  • Oh, Se-Boong;Kim, Tae-Kyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.105-110
    • /
    • 2008
  • The behaviour of an unsaturated soil was analyzed by performing $K_0$ consolidated triaxial tests. Unsaturated triaxial tests were performed with matric suctions for weathered soils and could catch stress paths under consolidation and stress-strain relationships under shear. As a result, both isotropic and $K_0$ conditions had similar shear strength envelopes in the same matric suction. Especially, strength parameters could obtain by stress variables based on critical state theory reasonably which was better than those by Mohr circles at failure.

  • PDF

Approximate Prediction of Soil Deformation Caused by Repeated Loading (반목하중으로 인한 지반의 변형 예측)

  • 도덕현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.3
    • /
    • pp.69-81
    • /
    • 1988
  • The Repeated Load Triaxial and Oedometer Tests to the weathered granite & silty clay soil have been fulfilled to investigate their dynarnic characteristics. The results obtained are summarized as follows ; 1. In the relation between the repeated triaxial compression and the oedometer test, the recoverable strain of weathered granite soil showed a tendency to decrease by the increase of the repeated loads number(N), and that of silty clay showed approximately constant values while the total strain increased continuously. 2. The changes of plastic strain was dependent to the level of deviator stress which is the most important element in the calculation of soil deformation under repeated load condition. And there was a significance of 10% between the level of stress and plastic strain. 3. When the soil was aimost dried or saturated to 100%, the deformation by the repeated loads was small. However the deformation showed peak around the saturation of 50%. 4. When the deformation was predicted by the repeated triaxial load tests of a laboratory, it is desirable to introduce the threshold stress concept in the calculation of deformation of subgrade of the pavement. 5. The improved design equation (Eq. 16) introducing the modulus of conversion(Fo), which is based on the Boussineq' s theory, is considered to be rational in the design of flexible pavement. From the above results, the deformation to the repeated traffic loads could be predicted by the repeated triaxial tests on the pavement materials or undisturbed soil layers, therefore it is think that the durable and econornic pavement could be constructed by reflecting that to the design.

  • PDF

A Study on Liquefaction Potential at Reclained Land by Hydraulic Hammer Compaction (유압햄머다짐 준설매립지반의 액상화평가에 관한 연구)

  • 김종국;김영웅;최인걸;최원호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.517-524
    • /
    • 2001
  • In this study, the effect of relative density and fine contents(Finer then # 0.08mm sieve) on liquefaction phenomenon in reclaimed land by hydraulic hammer compaction is analyzed. For more site-specific studies, reclaimed land in Inchon International Airport is selected and the cyclic triaxial tests are performed on disturbed samples. In cyclic triaxial tests, the characteristics of reclaimed land in Inchon International Airport are considered sufficiently. The liquefaction resistance stress ratio ($\tau$$\ell$/$\sigma$v') can be defined by relative density 40, 50, 60, and 70% and also by fine contents : 0, 10, 20, 30, and 40% under relative density (D$\_$r/) 50% used disturbed samples. From tile result of comparing tile cyclic triaxial tests, it is shown that the liquefaction strength of soil increases with increases of relative density and fine contents. Fspecially fine contents is the main factor affecting the liquefaction potential. In addition, the liquefaction resistance stress ratio is reduced by the increase of fine content and tile ratio of change is steep until fine contents 20% and that is flexible during the range of fine contents 20% to 40%. Through this study, it is proved that the soil characteristics (fine contents 5∼20%) of the reclaimed land in Inchon International Airport flays an important role in the reduction of liquefaction potential.

  • PDF

$K_0$ Values and Shear Strengths under $K_0$ Consolidated Triaxial Test According to Matric Suction for an Unsaturated Soil (불포화토의 $K_0$ 압밀 삼축압축실험시 모관흡수력에 따른 정지토압계수 및 전단강도에 관한 연구)

  • Kim, Tae-Kyung;Oh, Se-Boong
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.5
    • /
    • pp.89-98
    • /
    • 2008
  • In this study, the behaviour of an unsaturated soil was analyzed by performing $K_0$ consolidated triaxial tests. Unsaturated triaxial tests were performed with matric suctions for weathered soils and stress paths under consolidation and stress-strain relationships under shear were obtained. As a result, the $K_0$ value decreased as the matric suction increased. Besides, both isotropic and $K_0$ conditions had similar shear strength envelopes at the same matric suction. Especially, strength parameters could be obtained by stress variables used in the critical state theory more reasonably than by those of Mohr circles at failure.

A Basic Study on Borehole Breakout under Room Temperature and High Temperature True Triaxial Compression (상온 및 고온 하 진삼축압축실험을 이용한 시추공의 파괴 거동 기초 연구)

  • Yoon, Jeonghwan;Min, Ki-Bok;Park, Eui-Seob;Jung, Yong-Bok
    • Tunnel and Underground Space
    • /
    • v.30 no.6
    • /
    • pp.559-572
    • /
    • 2020
  • This paper performs laboratory experiments for borehole stability considering temperature and true triaxial stress condition, and observes a thermo-mechanical behavior of the rock under stress and temperature conditions of deep underground. China yellow sandstone and Hwangdeung granite specimens were used to perform a true triaxial compression test. Mechanical tests were carried out under nine confining pressure conditions, and thermo-mechanical tests using granite samples were carried out under six confining pressure conditions at 60-100℃. In the mechanical tests, maximum principal stress at borehole breakout was proportional to intermediate principal stress. In the thermo-mechanical tests, it was confirmed that thermal stress is added to the stress field of the borehole with the increase in temperature, resulting in additional breakout progress. To analyze the results of the laboratory experiment, Mogi-Coulomb failure criterion was used. The results of traditional triaxial compression test on cylindrical specimens and borehole breakout under true triaxial compressions matched well with Mogi-Coulomb failure criterion.

Shear wave velocity of sands subject to large strain triaxial loading

  • Teachavorasinskun, Supot;Pongvithayapanu, Pulpong
    • Geomechanics and Engineering
    • /
    • v.11 no.5
    • /
    • pp.713-723
    • /
    • 2016
  • Shear wave velocities of three selected sandy soils subject to drained triaxial compression test were continuously measured using the bender elements. The shear wave velocity during isotropic compression, as widely recognized, increased as confining pressure increased and they were correlated well. However, during drained shearing, the mean effective stress could no further provide a suitable correlation. The shear wave velocity during this stage was almost constant with respect to the mean effective stress. The vertical stress was found to be more favorable at this stage (since confining stress was kept constant). When sample was attained its peak stress, the shear wave velocity reduced and deviated from the previously existed trend line. This was probably caused by the non-uniformity induced by the formation of shear band. Subsequently, void ratios computed based on external measurements could not provide reasonable fitting to the initial stage of post-peak shear wave velocity. At very large strain levels after shear band formation, the digital images revealed that sample may internally re-arrange itself to be in a more uniform loose stage. This final stage void ratio estimated based on the proposed correlation derived during pre-peak state was close to the value of the maximum void ratio.

Liquefaction Behaviour and Prediction of Deviator Stress for Unsaturated Silty Sand

  • Lee, Dal-Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.7
    • /
    • pp.35-43
    • /
    • 2006
  • This study was carried out to investigate the liquefaction behaviour and predict deviator stress with matric suction, of unsaturated silty sand. The unsaturated soil tests were conducted using a modified triaxial cell and specimens were prepared using the moisture tamping method. The axis translation technique was used to create the desired matric suctions in the specimen. Undrained triaxial compression tests were carried out at matric suction of 0, 2, 5, 10 and 25 kPa. The specimens were sheared to axial strains of about 20% to obtain steady state conditions. The results showed that liquefaction of silty sand only occurs at matric suction of 0 kPa and 2 kPa. The results also show that at matric suctions of 5, 10 and 25 kPa, the resistance to liquefaction increases. As the suction increases, the undrained effective stress path approached the drained stress path. Also, the predicted and measured maximum deviator stress for unsaturated soils using the effective stress concept showed good agreement as matric suction increases. The deviator stress increase is nonlinear as matric suction increases.

Developement of Hyperbolic Model Considering Strain Dependency (변형률 의존성을 고려한 쌍곡선 모델의 개발)

  • Lee, Yong-An;Kim, You-Seong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.644-655
    • /
    • 2008
  • Conventional hyperbolic model does not satisfactorily predict the overall stress-strain behaviors of various geomaterials. Tatsuoka and Shibuya(1992) suggest the generalized hyperbolic equation(GHE) considering strain dependency and calculated performance is in good agreement with precise triaxial compression test results of stress-strain relations over wide range of strains before peak stress condition in some cases, but GHE model also does not satisfactorily predict stress-strain relations as strain goes on state of peak stress in most cases. For improve a weak point of the GHE, in this study, modified form of generalized hyperbolic equation (MGHE model) is proposed which can predict highly nonlinear stress-strain behavior for various geomaterials from small strain to peak stress condition.

  • PDF

Characteristics Analysis of Principal Stress Ratio in Concrete Faced Rockfill Dam Using a Model Test (모형실험에 의한 콘크리트 표면차수벽형 석괴댐의 주응력비 특성 분석)

  • Kim Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.4
    • /
    • pp.33-40
    • /
    • 2006
  • In present study, the principal stress condition needed to conduct cubical large-scale triaxial test which can reflect three dimensional stress condition (or plain strain condition) in a dam was investigated by performing model test and numerical analysis and the principal stress ratio varying with the height of CFRD was examined. Also, the principal stress ratio in CFRD body was investigated from the monitoring results of horizontal and vertical earth pressure gages, installed in the center zone and lower part of transition zone of the dam body, respectively, in order to consider the principal stress condition in the large-scale triaxial test to model the behavior of CFRD. The result of the study indicated that the principal stress ratio decreased gradually from the lower to the upper part in the dam body for its center axis and was about 0.5 and 0.2 in the lower and upper part, respectively.

A strain hardening model for the stress-path-dependent shear behavior of rockfills

  • Xu, Ming;Song, Erxiang;Jin, Dehai
    • Geomechanics and Engineering
    • /
    • v.13 no.5
    • /
    • pp.743-756
    • /
    • 2017
  • Laboratory investigation reveals that rockfills exhibit significant stress-path-dependent behavior during shearing, therefore realistic prediction of deformation of rockfill structures requires suitable constitutive models to properly reproduce such behavior. This paper evaluates the capability of a strain hardening model proposed by the authors, by comparing simulation results with large-scale triaxial stress-path test results. Despite of its simplicity, the model can simulate essential aspects of the shear behavior of rockfills, including the non-linear stress-strain relationship, the stress-dependence of the stiffness, the non-linear strength behavior, and the shearing contraction and dilatancy. More importantly, the model is shown to predict the markedly different stress-strain and volumetric behavior along various loading paths with fair accuracy. All parameters required for the model can be derived entirely from the results of conventional large triaxial tests with constant confining pressures.