• 제목/요약/키워드: Triaxial compression tests

Search Result 264, Processing Time 0.021 seconds

Displacement Behaviour of Cut-and-Cover Tunnel Lining by Numerical Analysis (수치해석에 의한 복개터널 라이닝의 변위거동)

  • Lee, Myung-Woog;Park, Byung-Soo;Jeon, Yong-Bae;Yoo, Nam-Jea
    • Journal of Industrial Technology
    • /
    • v.24 no.A
    • /
    • pp.227-238
    • /
    • 2004
  • This paper is results of experimental and nunerical works on the behavior of the cut-and-cover tunnel. Centrifuge model tests were performed to simulate the behavior of the cut-and-cover tunnels having cross sections of national road and subway tunnels. Model experiments were carried out with changing the cut slope and the slope of filling ground surface. Displacements of tunnel lining resulted from artificially accelerated gravitational force up to 40g of covered material used in model tests, were measured during centrifuge model tests. In model tests, Jumunjin Standard Sand with the relative density of 80 % and the zinc plates were used for the covered material and the flexible tunnel lining, respectively. Basic soil property tests were performed to obtain it's the property of Jumumjin Standard Sand. Shear strength parameters of Jumunjin Standard Sand were obtained by performing the triaxial compression tests. Direct shear tests were also carried out to find the mechanical properties of the interface between the lining and the covered material. Numerical analysis with the commercially available program of FLAC were performed to compare with results of centrifuge model experiment In numerical modelling. Mohr-Coulomb elasto-plastic constitutive model was used to simulaye the behavoor of Jumunjin Standard Sand and the interface element between the lining and the covered material was implemented to simulate the interaction between them. Compared results between model tests and numerical estimation with respect to displacement of the lining showed in good agreements.

  • PDF

Evaluation of Characteristics of Shear Strength and Poisso's Ratio through Triaxial and Bender Element Tests (벤더엘리먼트와 삼축시험을 통한 모래의 전단강도 및 포아송비 특성 규명)

  • Yoo, Jin-Kwon;Park, Du-Hee
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.5
    • /
    • pp.67-75
    • /
    • 2014
  • In this paper, isotropically consolidated drained triaxial compression test device installed with bender elements is used to measure stress, stain, and shear wave velocity, from which the characteristics of shear strength and Poisson'ratio are investigated. The results show that there is a unique relationship between maximum shear modulus determined from shear wave velocity and effective vertical stress at failure, which is defined as the sum of vertical and radial stresses at failure. The correlation is very useful since it is possible to predict the shear strength and internal friction angle from shear wave velocity. In addition, Poisson's ratio is determined from measured axial and volumetric strains. It is demonstrated that the range of measured Poisson's ratio is between 0.15 and 0.6, and increases with the axial strain. The ratios at axial strains smaller than 0.2% corresponds to the range recommended in design codes, which are approximately from 0.3~0.35. However, at axial strains exceeding 1%, the measured ratios are between 0.5 and 0.6. It is therefore shown that use of ratios commonly used in practice will result in pronounced underestimation at large strains.

The Behavior of Shallow Foundation under Eccentric Loads by Centrifuge Model Experiment (원심모형시험에 의한 편심하중을 받는 얕은기초의 거동)

  • Yoo, Nam-Jae;Lee, Myung-Woog;Park, Byung-Soo;Jeong, Gil-Soo
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.229-240
    • /
    • 2002
  • This paper is an experimental and numerical work of Investigating the bearing capacity of shallow foundation of rubble mound under eccentric loads. Parametric centrifuge model tests at the 50g level environments with the model footings in the form of strip footing were performed by changing the loading location of model footing, relative density and materials for ground foundation. For the model ground, crushed rock sampled from a rocky mountain was prepared with a grain size distribution of having an identical coefficient of uniformity to the field condition. Model ground was also prepared with relative densities of 50 % and 80 %. For loading condition, model tests with and without eccentric load were carned out to investigate the effect of eccentric loads and a numerical analysis with the commertially available software of FLAC was performed. For numerical estimation with FLAC, the hyperbolic model of a nonlinear elastic constitutive relationship was used to simulate the stress-stram constitutive relationship of model ground and a series of triaxial compression test were carried out to find the parameters for this model Test results were analyzed and compared with Meyerhof method (1963), effective area method based on the limit equilibrium method, and a numerical analysis with FLAC.

  • PDF

Determination of plastic concrete behavior at different strain rates to determine Cowper-Symonds constant for numerical modeling

  • Nateghi, Reza;Goshtasbi, Kamran;Nejati, Hamid Reza
    • Computers and Concrete
    • /
    • v.26 no.3
    • /
    • pp.227-237
    • /
    • 2020
  • Strain rate investigations are needed to calibrate strain-rate-dependent material models and numerical codes. An appropriate material model, which considers the rate effects, need to be used for proper numerical modeling. The plastic concrete cut-off wall is a special underground structure that acts as a barrier to stop or reduce the groundwater flow. These structures might be subjected to different dynamic loads, especially earthquake. Deformability of a structure subjected to dynamic loads is a principal issue which need to be undertaken during the design phase of these structures. The characterization of plastic concrete behavior under different strain rates is essential for proper designing of cut-off walls subjected to dynamic loads. The Cowper-Symonds model, as one of the most commonly applied material models, complies well with the behavior of a plastic concretes in low to moderate strain rates and will be useful in explicit dynamics simulations. This paper aims to present the results of an experimental study on mechanical responses of one of the most useful types of plastic concrete and Cowper-Symonds constant determination procedures in a wide range of strain rate from 0.0005 to 107 (1/s). For this purpose, SHPB, uniaxial, and triaxial compression tests were done on plastic concrete samples. Based on the results of quasi-static and dynamic tests, the dynamic increase factors (DIF) of this material in different strain rates and stress state conditions were determined for calibration of the Cowper - Symonds material models.

Creep Characteristics of Weathered Soils and Application of Singh-Mitchell's Creep Formula (풍화토의 크리프 특성 및 Singh-Mitchell 크리프 방정식 적용성 검토)

  • Bong, Tae-Ho;Son, Young-Hwan;Kim, Seong-Pil;Heo, Jun;Chang, Pyoung-Wuck
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.6
    • /
    • pp.69-76
    • /
    • 2009
  • Soils exhibit creep behavior in which deformation and movement proceed under a state of constant stress or load. In Korea, weathered soil is abundant and occupies around one-third of the country. Weathered soil is visually described as a sandy or gravelley soil, but the behavior is quite different from the behavior of usual sand and gravel. In particular, the permeability of weathered soil is similar to sand, but the durability of settlement is similar to clay. Therefore analysis of time-dependent behavior of weathered soil is very important. In this study, Creep tests with weathered soils were carried out under constant principal stress differences of various stress levels which were experimentally obtained by triaxial compression test. The results of these tests showed the creep behavior for which the deformation increased with time, and the results are consistent with phenomenological model by creep equation of Singh-Mitchell.

Reinforcing Effect of Dredged Marine Clay Mixed with Micro-Fiber (Micro-Fiber 흔라네 의한 준설해성점토의 보강효과)

  • 박영목;우문정;허상목;정연인
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.75-81
    • /
    • 2003
  • To investigate the reinforcing effect of subsurface layers of marine dredged clay(DMC) mixed with the micro-fiber(MF), a series of laboratory tests were performed on the DMC specimens with and without MF through uniaxial and triaxial compression tests. For the test programme, the elapsed time after dredging of marine clay, mixing rate and length of MF, and curing time of the composite were chosen as the important factors affecting the strength behaviour. The strength of the DMC mixed with MF and waste lime(WL) used for the admixture was found to be enhanced with the increasing content and length of MF, and with decreasing water content of DMC. MF and WL were applied as materials for trafficability improvement of the very soft reclaimed ground by DMC.

A Study on the Volume Change in Unsaturated Clayey Soil (불포화 정성토의 체적변화에 대한 연구)

  • Chang, Pyoung-Wuck;Gil, Sang-Choon
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.5
    • /
    • pp.37-42
    • /
    • 1998
  • This study was performed to evaluate the characteristics of volume change is unsaturated clayed soil. The medium-plastic clay was selected and compacted by 50% of Proctor standard compaction energy at 6% higher moisture content than its OMC. A series of isotropic compression tests and triaxial shear tests were performed. The results of the study are summarized as follows. At each matric suction, when the matric suction was increased, the yield stress was increased and slope of volume change was decreased. The more net mean stress was, the less the quantity of volume change was. In shear test, the volumetric strain was much rapidly changed in large matric than in low matric suctions. But the effect of matric suction to volume change disappeared under high net mean stress. At lower deviator stress the more matric suction was, the higher volume change was. But As the matric suction was increasing, the behavior of the unsaturated clayey soil was similar to that of saturated clayey soil. Volume change in the unsaturated clayey soil can be represented as a unique plane in three-dimensional space, which is the axes of net mean stress, matric suction and void ratio.

  • PDF

Sensitivity of Parameters for Elasto-plastic Constitutive Model (탄.소성 구성 모델의 초질매개변수 예민성)

  • Jeong, Jin-Seop;Kim, Chan-Gi;Lee, Mun-Su
    • Geotechnical Engineering
    • /
    • v.8 no.2
    • /
    • pp.81-96
    • /
    • 1992
  • This paper dealt with the influence of experimental error generated inevitably during performing experiments on the granular soil behaviour analysis selecting Lade's Single Work-Hardening constitutive model. Several isotropic compression-expansion tests and a series of drained conventional triaxial tests with various confining pressures for Baekma river sands were performed and the values of parameters for the above model were determined using computer program developed for this study based on regression analysis. By finding the range of the upper and lower bound for deviator stress and volumetric strain versus axial strain dependant on the increase and decrease of the standard deviation from mean value of parameters, sensitivities of all the parameters were examined. Practical use of program to determine the parameters and capability to predict the behaviour of granular soil by Lade's Single Work -Hardening model verified.

  • PDF

A stress model reflecting the effect of the friction angle on rockbursts in coal mines

  • Fan, Jinyang;Chen, Jie;Jiang, Deyi;Wu, Jianxun;Shu, Cai;Liu, Wei
    • Geomechanics and Engineering
    • /
    • v.18 no.1
    • /
    • pp.21-27
    • /
    • 2019
  • Rockburst disasters pose serious threat to mining safety and underground excavation, especially in China, resulting in massive life-wealth loss and even compulsive closed-down of some coal mines. To investigate the mechanism of rockbursts that occur under a state of static forces, a stress model with sidewall as prototype was developed and verified by a group of laboratory experiments and numerical simulations. In this model, roadway sidewall was simplified as a square plate with axial compression and end (horizontal) restraints. The stress field was solved via the Airy stress function. To track the "closeness degree" of the stress state approaching the yield limit, an unbalanced force F was defined based on the Mohr-Coulomb yield criterion. The distribution of the unbalanced force in the plane model indicated that only the friction angle above a critical value could cause the first failure on the coal in the deeper of the sidewall, inducing the occurrence of rockbursts. The laboratory tests reproduced the rockburst process, which was similar to the prediction from the theoretical model, numerical simulation and some disaster scenes.

A Basic Study on Torsion Shear Tests in Soils (흙의 비틀림전단시험에 관한 기초적 연구)

  • 홍원표
    • Geotechnical Engineering
    • /
    • v.4 no.1
    • /
    • pp.17-28
    • /
    • 1988
  • Among several types of element tests to predict soil behalf.iota in a laboratory, the torsion shear apparatus, in which the directions of principal stresses could be rotated during shearing, wra explained. In this study, this torsion shear apparatus was improved so as to be used in tests on clay specimens . And some undrained torsion shear tests u.ere performed on remolded specimens of Ko-consolidated clay to investigate the influence of reorientation of the principal stress directions on the stress-strain behavior The soil behavior by the torsion shear apparatus without torque was compared It.ith that by the conventional triaxial compression tests . The stress path, provided by both vertical loads and torque during torsion shear tests, has much effect on the stress-strain behavior, the pore pressure and the effective principal stress ratio . The rotation angle of the principal stress and the b-value were gradually increased with increasing shear strain, but converged to the values at failure.

  • PDF