• Title/Summary/Keyword: Triassic granitoid

Search Result 3, Processing Time 0.021 seconds

CHIME Zircon Age of the Gamaksan Alkaline Meta-Granitoid in the Northwestern Margin of the Gyeonggi Massif, Korea, and its Tectonic Implications (경기육괴 북서 연변부 감악산 알칼리 변성화강질암의 CHIME 저어콘 연대와 지체구조적 의의)

  • Cho, Deung-Lyong;Lee, Seung-Ryeol;Suzuki, Kazuhiro
    • The Journal of the Petrological Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.180-188
    • /
    • 2007
  • We carried on CHIME zircon age dating for the Gamaksan alkaline meta-granitoid (GAM) from the northwestern margin of the Gyeonggi massif, and obtained a timing of regional metamorphism at $247{\pm}14Ma$ (n=103, MSWD=0.92). The age is compatible with Permo-Triassic regional metamorphic ages from the Imjingang Belt which has been regarded as possible eastward extension of Triassic collisional belt in China. Considering an extensional ductile shearing of the Gyeonggi (Kyonggi) Shear Zone which deformed GAM occurred at 226 Ma with temperature condition about $500^{\circ}C$ (Kim et al., 2000), and the Late Triassic to Early Jurassic Daedong Group unconformably overlies on top of the ductile shear zone, cooling rate of GAM over the period can be estimated as $18{\sim}10^{\circ}C/Ma$. Since new zircon begin to pow at temperature higher than upper-amphibolite facies condition (${\sim}700^{\circ}C$), cooling rate of GAM from peak metamorphism (247 Ma) to deposition of the Daedong G.oup (${\sim}$Early Jurassic) would be higher than $10^{\circ}C/Ma$. Such rapid cooling rate is compatible with that reported from exhumation stage of the Dabie-Sulu Belt, and supports an idea that the Gyeonngi massif is a part of Permo-Triassic orogenic belt in East Asia.

A study on the Mesozoic Magmatism in the Dangjin Area, Western Gyeonggi Massif, Korea (경기육괴 서부 당진지역의 중생대 화성활동에 대한 연구)

  • Yi, Sang-Bong;Oh, Chang Whan;Choi, Seon-Gyu;Seo, Jieun
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.85-109
    • /
    • 2019
  • Various Mesozoic igneous rocks such as biotite granite, leucogranites, granodiorite, hornblende gabbros, quartz gabbros and tonalite are identified in the Dangjin area, the western Gyeonggi Massif, Korea. The major Mesozoic igneous activities in the Dangjin area are recognized as periods of ca. 227 Ma, ca. 190 Ma, ca. 185 Ma and ca. 175 Ma. Gabbroic rocks consist mainly of hornblende gabbros and quartz gabbros which are characterized by dominant hornblende and occur as small stocks. The gabbroic rocks have intrusion ages between 185 and 175 Ma. Triassic biotite granite ($225{\pm}2.3Ma$) is considered to be a post-collisional granite similar in geochemistry to the southern Haemi granite ($233{\pm}2Ma$, Choi et al., 2009). Although the main magma source of biotite granite appears to be a granitic continental crust, the biotite granite could have a small amount of mafic rocks as a magma source, or a small amount of mantle-derived melts (i.e., mafic melts) could have contributed to the formation of primitive granite magma in composition. Jurassic granitoids and gabbroic rocks in the Dangjin area are considered to be continental arc igneous rocks associated with the subduction of the Paleo-Pacific plate. It is presumed that the leucogranites are formed by crustal anatexis of granitic materials and the gabbroic rocks are formed by partial melting of enriched mantle.

Geological History and Landscapes of the Juwangsan National Park, Cheongsong (국립공원 주왕산의 지질과정과 지형경관)

  • Hwang, Sang Koo;Son, Young Woo;Choi, Jang Oh
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.235-254
    • /
    • 2017
  • We investigate the geological history that formed geology and landscapes of the Juwangsan National Park and its surrounding areas. The Juwangsan area is composed of Precambrian gneisses, Paleozoic metasedimentary rocks, Permian to Triassic plutonic rocks, Early Mesozoic sedimentary rocks, Late Mesozoic plutonic and volcanic rocks, Cenozoic Tertiary rhyolites and Quaternary taluses. The Precambrian gneisses and Paleozoic metasedimentary rocks of the Ryeongnam massif occurs as xenolithes and roof-pendents in the Permian to Triassic Yeongdeok and Cheongsong plutonic rocks, which were formed as the Songrim orogeny by magmatic intrusions occurring in a subduction environment under the northeastern and western parts of the area before a continental collision between Sino-Korean and South China lands. The Cheongsong plutonic rocks were intruded by the Late Triassic granodiorite, which include to be metamorphosed as an orthogneiss. The granodiorite includes geosites of orbicular structure and mineral spring. During the Cretaceous, the Gyeongsang Basin and Gyeongsang arc were formed by a subduction of the Izanagi plate below East Asia continent in the southeastern Korean Peninsula. The Gyeongsang Basin was developed to separate into Yeongyang and Cheongsong subbasins, in which deposited Dongwach/Hupyeongdong Formation, Gasongdong/Jeomgok Formation, and Dogyedong/Sagok Formation in turn. There was intercalated by the Daejeonsa Basalt in the upper part of Dogyedong Formation in Juwangsan entrance. During the Late Cretaceous 75~77 Ma, the Bunam granitoid stock, which consists of various lithofacies in southwestern part, was made by a plutonism that was mixing to have an injection of mafic magma into felsic magma. During the latest Cretaceous, the volcanic rocks were made by several volcanisms from ubiquitous andesitic and rhyolitic magmas, and stratigraphically consist of Ipbong Andesite derived from Dalsan, Jipum Volcanics from Jipum, Naeyeonsan Tuff from Cheongha, Juwangsan Tuff from Dalsan, Neogudong Formation and Muposan Tuff. Especially the Juwangsan Tuff includes many beautiful cliffs, cayon, caves and falls because of vertical columnar joints by cooling in the dense welding zone. During the Cenozoic Tertiary, rhyolite intrusions formed lacolith, stocks and dykes in many sites. Especially many rhyolite dykes make a radial Cheongsong dyke swarm, of which spherulitic rhyolite dykes have various floral patterns. During the Quaternary, some taluses have been developed down the cliffs of Jungtaesan lacolith and Muposan Tuff.