DOI QR코드

DOI QR Code

A study on the Mesozoic Magmatism in the Dangjin Area, Western Gyeonggi Massif, Korea

경기육괴 서부 당진지역의 중생대 화성활동에 대한 연구

  • Yi, Sang-Bong (Division of Polar Earth-System Sciences, Korea Polar Research Institute) ;
  • Oh, Chang Whan (Department of Earth and Environmental Sciences and the Earth and Environmental Research Center, Chonbuk National University) ;
  • Choi, Seon-Gyu (Department of Earth and Environmental Sciences, Korea University) ;
  • Seo, Jieun (Department of Earth and Environmental Sciences, Korea University)
  • 이상봉 (한국해양과학기술원 부설 극지연구소) ;
  • 오창환 (전북대학교 지구환경과학과 및 지구환경시스템 연구소) ;
  • 최선규 (고려대학교 지구환경과학과) ;
  • 서지은 (고려대학교 지구환경과학과)
  • Received : 2019.03.28
  • Accepted : 2019.06.01
  • Published : 2019.06.30

Abstract

Various Mesozoic igneous rocks such as biotite granite, leucogranites, granodiorite, hornblende gabbros, quartz gabbros and tonalite are identified in the Dangjin area, the western Gyeonggi Massif, Korea. The major Mesozoic igneous activities in the Dangjin area are recognized as periods of ca. 227 Ma, ca. 190 Ma, ca. 185 Ma and ca. 175 Ma. Gabbroic rocks consist mainly of hornblende gabbros and quartz gabbros which are characterized by dominant hornblende and occur as small stocks. The gabbroic rocks have intrusion ages between 185 and 175 Ma. Triassic biotite granite ($225{\pm}2.3Ma$) is considered to be a post-collisional granite similar in geochemistry to the southern Haemi granite ($233{\pm}2Ma$, Choi et al., 2009). Although the main magma source of biotite granite appears to be a granitic continental crust, the biotite granite could have a small amount of mafic rocks as a magma source, or a small amount of mantle-derived melts (i.e., mafic melts) could have contributed to the formation of primitive granite magma in composition. Jurassic granitoids and gabbroic rocks in the Dangjin area are considered to be continental arc igneous rocks associated with the subduction of the Paleo-Pacific plate. It is presumed that the leucogranites are formed by crustal anatexis of granitic materials and the gabbroic rocks are formed by partial melting of enriched mantle.

경기육괴 서부 당진지역에서는 흑운모 화강암, 우백질 화강암류, 화강섬록암, 각섬석 반려암, 석영 반려암, 토날라이트 등의 중생대 화성암이 확인된다. 당진지역의 중생대 주요 화성활동 시기는 ~227 Ma, ~190 Ma, ~185 Ma, ~175 Ma로 나타난다. 반려암류는 함수광물인 각섬석의 함량이 높게 나타나는 각섬석 반려암과 석영 반려암으로 주로 구성된다. 이들은 소규모 암주 상으로 연구지역 전역에서 관찰되고, 관입 시기는 185~175 Ma로 확인된다. 트라이아스기 흑운모 화강암($225{\pm}2.3Ma$)은 남부의 해미화강암($233{\pm}2Ma$, Choi et al., 2009)과 지화학적 성격이 유사한 충돌 후 화성암으로 판단된다. 흑운모 화강암의 주요 마그마 근원물질은 화강암질 대륙지각이지만, 이 암체가 소량의 고철질암을 마그마 근원물질로 갖거나 원시 마그마 형성 시소량의 맨틀 용융물(고철질 맬트)이 성분으로 기여했을 가능성이 있다. 쥐라기 화강암류와 반려암류는 고태평양판의 섭입과 관련되어 형성된 대륙호 화성암으로 판단된다. 우백질 화강암류는 화강암질 대륙지각의 용융에 의해, 반려암류는 부화된 맨틀의 부분용융에 의해 형성된 것으로 추론된다.

Keywords

HGOSBQ_2019_v28n2_85_f0001.png 이미지

Fig. 1. Geological map of the Dangjin area, western Gyeonggi Massif (modified from Lee et al., 1989; Shin et al.,1989; Choi et al., 2013, 2014) with U-Pb zircon ages (this study) and reference data and simple tectonic map of the Korean Peninsula and east China (modified from Oh and Kusky, 2007; Zhao et al., 2005). The geological map of Dangjin area has been modified based on the field survey. Abbreviations: NCC, North China Craton; JLJB, Jiao-Liao-Ji Belt; NM, Nangrim Massif; IB, Imjingang Belt; GM, Gyeonggi Massif; OMB, Okcheon Metamorphic Belt; TB, Taebacksan Basin; YM, Yeongnam Massif.

HGOSBQ_2019_v28n2_85_f0002.png 이미지

Fig. 2. Outcrop photographs of Mesozoic intrusive rocks: (a) medium- to fine-grained biotite granite (SS0903), (b) medium-grained leucogranite (SS0801, Samung-ri), (c-f) magma mixing and mingling zone (Mt. Ibe) in which various intrusive rocks occur, (d) granodiorite hosting mafic microgranular enclaves (MMEs), (e) igneous banded structure developed in granodiorite, (f) hand specimen of granodiorite hosting MME, (g) quartz gabbro (SS085A) intruding Precambrian country rock (biotite gneiss, SS0803) and hornblende (hbl) gabbro including evolved gabbroic pegmatite. The age dating results of (c) and (h) are taken from Zhai et al. (2016).

HGOSBQ_2019_v28n2_85_f0003.png 이미지

Fig. 3. Photomicrograph of Mesozoic intrusive rocks: (a) Triassic medium- to fine-grained biotite granite, (b) Jurassic medium-grained leucogranite (Samung-ri), (c) Jurassic porphyritic granodiorite hosting mafic microgranular enclave (MME), (d) Jurassic hornblende gabbro consisting mainly of plagioclase (Pl) and hornblende (Hbl), (e) Jurassic gabbroic pegmatite consisting of Pl, Hbl and quartz (Qtz) and (f) microcrystalline Jurassic MME hosting medium-grained Hbl and Pl. The photos (a, b and f) were taken under cross-polarized light, and the photos (c, d and e) were taken under plane-polarized light. Mineral abbreviations: biotite, Bt; orthoclase, Or; microcline, Mc; chlorite, chl; magnetite, Mt.

HGOSBQ_2019_v28n2_85_f0004.png 이미지

Fig. 4. Representative cathodoluminescence (CL) images of zircons and the spots of the SHRIMP U-Pb analyses with 206Pb/238U ages (Ma) of the Mesozoic intrusive rocks. The small-sized numbers are the spot numbers in Table 1.

HGOSBQ_2019_v28n2_85_f0005.png 이미지

Fig. 5. Zircon concordia diagrams with igneous ages (weighted mean of 238U/206Pb age and concordia age) of basement gneiss (biotite gneiss) and Mesozoic intrusive rocks: (a) biotite gneiss (SS0803), (b) biotite granite (SS0903), (c) leucogranite (SS0801, Samung-ri), (d) quartz gabbro (SS2808), (e) quartz gabbro (SS085A) and (f) hornblende gabbro (SS2702).

HGOSBQ_2019_v28n2_85_f0006.png 이미지

Fig. 6. Geochemical classification of Triassic biotite granite on (a) the total alkali vs. silica (TAS) diagram (after Middlemost, 1994) with subdivision into alkaline and subalkaline series (after McDonald and Katsura, 1964; McDonald, 1968; Kuno, 1966; Irvine and Baragar, 1971) and (b) the K2O vs. SiO2 diagram (after Peccerillo and Taylor, 1976). (c) Chondrite-normalized rare earth element (REE) and (d) normal mid-ocean ridge basalt (NMORB)-normalized multi-element variation diagrams of Triassic biotite granite. Reference data of the Haemi granite are taken from Choi et al. (2009). The normalization values are taken from Sun and McDonough (1989).

HGOSBQ_2019_v28n2_85_f0007.png 이미지

Fig. 7. Geochemical classification of Jurassic gabbroic rocks and granitoids on (a) the TAS diagram with subdivision into alkaline and subalkaline series and (b) the K2O vs. SiO2 diagram. The source of the original diagram is the same as those in Fig. 6.

HGOSBQ_2019_v28n2_85_f0008.png 이미지

Fig. 8. Chondrite-normalized REE and N-MORB-normalized multi-element variation diagrams of Jurassic gabbroic rocks and granitoids. The normalization values and upper continental (cont.) crust composition are taken from Sun and McDonough (1989) and Rudnick and Gao (2003), respectively. Abbreviation: OIB, ocean island basalt.

HGOSBQ_2019_v28n2_85_f0009.png 이미지

Fig. 9. Comparison of the studied Jurassic gabbros with Triassic gabbros from the central/eastern Gyeonggi Massif and Cretaceous mafic volcanic/subvolcanic rocks from the east-central China based on plots of their compositions on the tectonic discrimination diagram: (a) Th/Yb vs. Nb/Yb plot with MORB-OIB array and subduction enrichment fingerprint (Pearce, 2008) and (b) La/Ba vs. La/Nb plot (Su et al., 2012). Reference data are taken from Zhang (2007), Yi et al. (2016) and references therein. Abbreviation: CLM, continental (cont.) lithospheric mantle.

HGOSBQ_2019_v28n2_85_f0010.png 이미지

Fig. 10. Comparison of melt compositions derived by experimental dehydration (i.e., fluid absent)-melting of various crustal materials (Patiño Douce, 1999) with compositions of Triassic and Jurassic granitoids. Melt compositions obtained by dehydration melting of calc-alkaline granites at 4 kbar (low pressure) and 8 kbar (high pressure) by Patiño Douce (1997) are also presented for the comparison.

Table 1. SHRIMP U-Pb data for zircons from Mesozoic granitoids and gabbroic rocks and Precambrian country rock (biotite gneiss).

HGOSBQ_2019_v28n2_85_t0001.png 이미지

Table 1. Continued

HGOSBQ_2019_v28n2_85_t0002.png 이미지

Table 2. Representative major and trace element compositions of Mesozoic granitoids in the Dangjin area

HGOSBQ_2019_v28n2_85_t0003.png 이미지

Table 3. Representative major and trace element compositions of Jurassic gabbroic rocks in the Dangjin area

HGOSBQ_2019_v28n2_85_t0004.png 이미지

References

  1. Barbarin, B. and Didier, J., 1992, Genesis and evolution of mafic microgranular enclaves through various types of interaction between coexisting felsic and mafic magmas. Transactions of the Royal Society of Edinburgh: Earth Science, 76, 63-74.
  2. Castro, A., Corretge, L.G., Rosa, J.D.D., Fernandez, C., Lopez, S., Garcia-Moreno, O. and Chacon, H., 2003, The appinite-migmatite complex of Sanabria, NW Iberian Massif, Spain. Journal of Petrology, 44, 1309-1344. https://doi.org/10.1093/petrology/44.7.1309
  3. Cheong, C.-s. and Kim, N., 2012, Review of radiometric ages for Phanerozoic granitoids in southern Korean Peninsula. Journal of the Petrological Society of Korea, 21, 173-192. https://doi.org/10.7854/JPSK.2012.21.2.173
  4. Cheong, C.-S., Kim, N., Jo, H.J., Cho, M., Choi, S.H., Zhou, H. and Geng, J.-z., 2015, Lithospheric mantle signatures as revealed by zircon Hf isotopes of Late Triassic post-collisional plutons from the central Korean peninsula, and their tectonic implications. Terra Nova, 27, 97-105. https://doi.org/10.1111/ter.12135
  5. Cheong, A.C., Jo, H.J., Jeong, Y.J. and Li, X.-H., 2018, Magmatic response to the interplay of collisional and accretionary orogenies in the Korean Peninsula: Geochronological, geochemical, and O-Hf isotopic perspectives from Triassic plutons. Geological Society of America Bulletin, 131, 609-634.
  6. Cho, D.-L., Kim, Y.-J. and Amstrong, R., 2006, SHRIMP U-Pb geochronology of detrital zircons from iron-bearing quartzite of the Seosan Group: Constraints on age and stratigraphy. Journal of the Petrological Society of Korea, 15, 119-127.
  7. Cho, M., Na, J. and Yi, K., 2010, SHRIMP U-Pb ages of detrital zircons in metasandstones of the Taean Formation, Western Gyeonggi massif, Korea: Tectonic implications. Geosciences Journal, 14, 187-214.
  8. Choi, S.-G., Rajesh, V.J., Seo, J., Park, J.-W., Oh, C.W., Pak, S.-J. and Kim, S.W., 2009, Petrology, geochronology and tectonic implications of Mesozoic high Ba-Sr granites in the Haemi area, Hongseong Belt, South Korea. Island Arc, 18, 266-281. https://doi.org/10.1111/j.1440-1738.2008.00622.x
  9. Choi, S.J., Kee, W.-S., Koh, H.J., Kwon, C.W., Kim, B.C., Kim, S.W., Kim, Y.B., Kim, Y.H., Kim, H., Park, S.-I., Song, K.-Y., Yeon, Y.K., Lee, S.R., Lee, S.S., Lee, S.R., Lee, Y.S., Lee, H.-J., Cho, D.-L., Choi, P.-y., Han, J.G., Han, H.J., Hwang, J.-h., Ko, K.T. and Kwon, S., 2013, Technical development of tectonic evolution and geological information construction (GP2011-004-2013(2)). Korea Institute of Geoscience and Mineral Resources, 376p.
  10. Choi, S.J., Kee, W.-S., Ko, K., Koh, H.J., Kwon, C.W., Kim, B.C., Kim, S.W., Kim, Y.B., Kim, Y.H., Kim, H., Park, S.-I., Song, K.-Y., Yeon, Y.K., Lee, S.R., Lee, S.S., Lee, S.R., Lee, Y.S., Lee, H.-J., Cho, D.-L., Choi, P.-y., Han, J.G., Han, H.J., Hwang, J.-h., Park, J.E., Lee, T.H., Kwon, S. and Choi, T.J., 2014, Technical development of tectonic evolution and geological information construction (GP2011-004-2014(3)). Korea Institute of Geoscience and Mineral Resources, 426p.
  11. Conticelli, S. and Peccerillo, A., 1992, Petrology and geochemistry of potassic and ultrapotassic volcanism in central Italy: petrogenesis and inferences on the evolution of the mantle sources. Lithos, 28, 221-240. https://doi.org/10.1016/0024-4937(92)90008-M
  12. Dai, L.-Q., Zhao, Z.-F., Zheng, Y.-F. and Zhang, J., 2015a, Source and magma mixing processes in continental subduction factory: Geochemical evidence from postcollisional mafic igneous rocks in the Dabie orogen. Geochemisty, Geophysics, Geosystems, 16, 659-680. https://doi.org/10.1002/2014GC005620
  13. Dai, L.-Q., Zhao, Z.-F. and Zheng, Y.-F., 2015b, Tectonic development from oceanic subduction to continental collision: Geochemical evidence from postcollisional mafic rocks in the Hong'an-Dabie orogens. Gondwana Research, 27, 1236-1254. https://doi.org/10.1016/j.gr.2013.12.005
  14. Elliott, T., Plank, T., Zindler, A., White, W. and Bourdon, B., 1997, Element transport from slab to volcanic front at the Mariana Arc. Journal of Geophysical Research, 102, 14991-15019. https://doi.org/10.1029/97JB00788
  15. Flower, M.B., 1988, Ach'uaine hybrid appinite pipes: evidence for mantle-derived shoshonitic parent magmas in Caledonian granite genesis. Geology, 16, 1026-1030. https://doi.org/10.1130/0091-7613(1988)016<1026:AUHAPE>2.3.CO;2
  16. Flower, M.B. and Henrry, P.J., 1996, Mixed Caledonian appinite magmas: implications for lamprophyre fractionation and high Ba-Sr granite genesis. Contribution to Mineralogy and Petrology, 126, 199-215. https://doi.org/10.1007/s004100050244
  17. Fraser, K.J., Hawkesworth, C.J., Erlank, A.J., Mitchell, R.H. and ScottSmith, B.H., 1985, Sr-Nd-Pb isotope and minor element geochemistry of lamproites and kimberites. Earth and Planetary Science Letters, 56, 445-456.
  18. Guo, F., Fan, W., Li, C., Wang, C.Y., Li, H., Zhao, L. and Li, J., 2014, Hf-Nd-O isotopic evidence for melting of recycled sediments beneath the Sulu Orogen, North China. Chemical Geology, 381, 243-258. https://doi.org/10.1016/j.chemgeo.2014.04.028
  19. Hawkesworth, C.J., Turner, S.P., McDermott, F., Peate, D.W. and van Calsteren, P., 1997, U-Th isotopes in arc magmas: Implications for element transfer from the subducted crust. Science, 276, 551-555. https://doi.org/10.1126/science.276.5312.551
  20. Ireland, T.R. and Williams, I.S., 2003, Considerations in zircon geochronology by SIMS. In Zircon (eds. Hanchar, J.M. and Hoskin, P.W.O.), Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, 53, 215-241.
  21. Ivrine, T.N. and Baragar, W.R.A., 1971, A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8, 523-548. https://doi.org/10.1139/e71-055
  22. Johnson, M.C. and Plank, T., 1999, Dehydration and melting experiments constrain the fate of subducted sediments. Geochemistry Geophysics Geosystems, 1, 1999GC000014. https://doi.org/10.1029/1999GC000014
  23. Kee, W.-S., Kim, H., Lee, H.-J., Park, S.-I., Cho, D.-L. and Kim, S.W., 2011, Geological map of Gyeonggi massif, Korea (SHRIMP U-Pb zircon age, 1:500,000 scale), Korea Institute of Geoscience and Mineral Resources.
  24. Kelemen, P.B., Rilling, J.L., Parmentier, E.M., Mehl, L. and Hacker, B.R., 2003, Thermal structure due to solid-state flow in the mantle wedge beneath arcs. In Inside the subduction factory (eds. Eiler, J. E.), American geophysical Union, Geophysical Monograph, 138, Washington DC, 293-311.
  25. Kim, J.-S., Kim, K.-K., Jwa, Y.-J. and Son, M., 2012, Cretaceous to early Tertiary granites and magma mixing in South Korea: Their spatio-temporal variations and tectonic implications (multiple slab window model). The Journal of the Petrological Society of Korea, 21, 203-216. https://doi.org/10.7854/JPSK.2012.21.2.203
  26. Kim, S.W., Williams, I.S., Kwon, S. and Oh, C.W., 2008, SHRIMP zircon geochronology, and geochemical charateristics of metaplutonic rocks from the south-western Gyeonggi Block, Korea: Implications for Paleoproterozoic to Mesozoic tectonic links between the Korean Peninsula and eastern China. Precambrian Research, 162, 475-497. https://doi.org/10.1016/j.precamres.2007.10.006
  27. Kim, S.W., Kwon, S., Koh, H.J., Yi, K., Jeong, Y.-J. and Santosh, M., 2011, Geotectonic framework of Permo-Triassic magmtism within the Korean Peninsula. Gondwana Research, 20, 865-889. https://doi.org/10.1016/j.gr.2011.05.005
  28. Kim, S.W., Kwon, S., Ko, K., Yi. K., Cho, D.-L., Kee, W.-S., Kim, B.C., 2015, Geochronological and geochemical implications of Early to Middle Jurassic continental adakitic arc magmatism in the Korean Peninsula. Lithos, 227, 225-240. https://doi.org/10.1016/j.lithos.2015.04.012
  29. Kim, T.S., Oh, C.W. and Kim, J., 2011, The characteristic of mangerite and gabbro in the Odesan area and its meaning to the Triassic tectonics of Korean Peninsula. The Journal of the Petrological Society of Korea, 20, 77-98. https://doi.org/10.7854/JPSK.2011.20.2.077
  30. Kuno, H., 1966, Lateral variation of basalt magma types across continental margins and island arcs. Bulletin of Volcanology, 29, 195-222. https://doi.org/10.1007/BF02597153
  31. Lee, B.-J., Kim, D.-H., Choi, H.-I., Kee, W.-S. and Park, K.,-H., 1996, Explanatory note of the Daejeon sheet (1:250,000), Korea Institute of Geology, Mining and Materials (KIGAM), 59p.
  32. Lee, B.-J., Kim, Y.B., Lee, S.R., Kim, J.C., Kang, P.J., Choi, H.I. and Jin, M.S., 1999, Explanatory note of the Seoul-Namchonjeom sheet (1:250,000), Korea Institute of Geology, Mining and Materials (KIGAM), 64p.
  33. Lee, B.Y., 2017, The tectonic history of the Imjingang belt and Dangjin-Haemi area from Neoproterozoic to Triassic. Master Dissertation, Chonbuk National University, 118p.
  34. Lee, S.M., Kim, H.S., Na, K.C. and Park, B.Y., 1989, Geological report of the Tangjin.Changgohang sheet (1:50,000). Korea Institute of Energy and Resources, 15p.
  35. Liu, S., Feng, C., Hu, R., Zhai, M., Gao, S., Lai, S., Yan, J., Coulson I.M. and Zou, H., 2015, Zircon U-Pb geochronological, geochemical, and Sr-Nd isotope data for Early Cretaceous mafic dykes in the Tancheng-Lujiang Fault area of the Shandong Province, China: Constraints on the timing of magmatism and magma genesis. Journal of Asian Earth Sciences, 98, 247-260. https://doi.org/10.1016/j.jseaes.2014.11.001
  36. Ludwig, K.R., 2003, Users manual for Isoplot/Ex version 3.0: A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication 4, Berkeley, California, 70p.
  37. Maruyama, S., Isozaki, Y., Kimura, G. and Terabayashi, M., 1997, Paleogeographic maps of the Japanese Islands: Plate tectonic synthesis from 750 Ma to the present. The Island Arc, 6, 121-142. https://doi.org/10.1111/j.1440-1738.1997.tb00043.x
  38. McCulloch, M.T. and Gamble, J.A., 1991, Geochemical and geodynamical constraints on subduction zone magmatism. Earth and Planetary Science Letters, 102, 358-374. https://doi.org/10.1016/0012-821X(91)90029-H
  39. McCulloch, M.T., Jacques, A.L., Nelson, D.R. and Lewis, G.D., 1983, Nd and Sr isotopes in kimberites and lamproites from Western Australia: An enriched mantle origin. Nature, 302, 400-403. https://doi.org/10.1038/302400a0
  40. McDonald, G.A., 1968, Composition and origin of Hawaiian lavas. In Studies in volcanology: a memoir in honour of Howel Williams (eds. Coats, R.R., Hay, R.L., and Anderson, C.A.), Geological Society of American Memoirs, 116, 477-522.
  41. Mcdonald, G.A. and Kstsura, T., 1964, Chemical composition of Hawaiian lavas. Journal of Petrology, 5, 83-133.
  42. Middlemost, E.A.K., 1994, Naming materials in the magma/igneous rock system. Earth Science Reviews, 37, 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
  43. Molina, J.F., Montero, P., Bea, F. and Scarrow, J.H., 2012, Anomalous xenocryst dispersion during tonalite-granodiorite crystal mush hybridization in the mid crust : Mineralogical and geochemical evidence from Variscan appinites (Avila Batholith, Central Iberia). Lithos, 153, 224-242. https://doi.org/10.1016/j.lithos.2012.03.021
  44. Murphy, J.B., 2013, Appinite suites: A record of the role of water in the genesis, transport, emplacement and crystallization of magma. Earth-Science Reviews, 119, 35-59. https://doi.org/10.1016/j.earscirev.2013.02.002
  45. Murphy, J.B., Hynes, A.J. and Cousens, B., 1997, Tectonic influence on late Proterozoic Avalonian magmatism: an example from Greendale Complex, Antigonish Highlands, Nova Scotia, Canada. In The nature of magmatism in the Appalachian orogen (eds. Sinha, A.K., Whalen, J.B. and Hogan, J.P.), Geological Survey of America Memoir, 191, 255-274.
  46. Na, K.C., Kim, H.S., Lee, S.H., 1982, Stratigraphy and metamorphism of Seosan Group, Journal of the Korean Institute of Mining Geology, 15, 33-39.
  47. Nelson, D.R., 1992, Isotopic characteristics of potassic magmas: evidence for the involvement of subducted sediments in magma genesis. Lithos, 28, 403-420. https://doi.org/10.1016/0024-4937(92)90016-R
  48. Oh, C.W., 2012, The tectonic evolution of South Korea and northeast Asia from Paleoproterozoic to Triassic. The Journal of the Petrological Society of Korea, 21, 59-87. https://doi.org/10.7854/JPSK.2012.21.2.059
  49. Oh, C.W. and Kusky, T.M., 2007, The Late Permian to Triassic Hongseong-Odesan collision belt in South Korea, and its tectonic correlation with China and Japan. International Geology Review, 49, 639-657.
  50. Oh, C.W., Kim, S.W., Choi, S.G., Zhai, M., Guo, J. and Sajeev, K., 2005, First finding of eclogite facies metamorphic event in South Korea and its correlation with the Dabie-Sulu Collision Belt in China. Journal of Geology, 113, 226-232. https://doi.org/10.1086/427671
  51. Oh, C.W., Imayama, T., Yi, S.-B., Kim, T., Ryu, I.-C., Jeon, J. and Yi, K., 2014, Middle Paleozoic metamorphism in the Hongseong area, South Korea, and tectonic significance for Paleozoic orogeny in northeast Asia. Journal of Asian Earth Sciences, 95, 203-216. https://doi.org/10.1016/j.jseaes.2014.08.011
  52. Oh, C.W., Imayama, T., Jeon, J. and Yi, K., 2017, Regional Middle Paleozoic metamorphism in the southwestern Gyeonggi Massif, South Korea: Its implications for tectonics in Northeast Asia. Journal of Asian Earth Sciences, 145, 542-564. https://doi.org/10.1016/j.jseaes.2017.06.030
  53. Park, K.-H., 2012, Cyclic igneous activities during the late Paleozoic to early Cenezoic period over the Korean Peninsula. Journal of the Petrological Society of Korea, 21, 193-202. https://doi.org/10.7854/JPSK.2012.21.2.193
  54. Park, K.-H., Kim, M.J., Yang, Y.S. and Cho, K.O, 2010, Age distribution of the Jurassic plutons in Korean Peninsula. Journal of the Petrological Society of Korea, 19, 269-281.
  55. Patino Douce, A.E., 1997, Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology, 25, 743-746. https://doi.org/10.1130/0091-7613(1997)025<0743:GOMATG>2.3.CO;2
  56. Patino Douce, A.E., 1999, What do experiements tell us about the relative contributions of crust and mantle to the origin of granitic magmas? In Understanding granites: Integrating new and classical techniques (eds. Castro, A., Fernandez, C. and Vigneresse, J.L.), The Geological Society of London, Special Publication, 168, 55-75.
  57. Pearce, J.A., 2008, Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100, 14-48. https://doi.org/10.1016/j.lithos.2007.06.016
  58. Peccerillo, A. and Taylor, S.R., 1976, Geochemistry of Eocene calc-alkaline volcanic rocks in the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58, 63-81. https://doi.org/10.1007/BF00384745
  59. Pons, J., Barbey, P., Nachit, H. and Burg, J.-P., 2006, Development of igneous layering during growth of pluton: The Tarcouate laccolith (Morocco). Tectonophysics, 413, 271-286. https://doi.org/10.1016/j.tecto.2005.11.005
  60. Rudnick, R.L. and Gao, S., 2003, Composition of the continental crust. In Treatise on geochemistry 3: The crust (eds. Rudnick, R.L.), Elsevier-Pergamon, Oxford, 1-64.
  61. Sagong, H., Kwon, S.-T. and Ree, J.-H., 2005, Mesozoic episodic magmatism in South Korea and its tectonic implication. Tectonics, 24, TC5002, doi:10.1029/2004TC001720.
  62. Scarrow, J.H., Molina, J.F., Bea, F. and Montero, P., 2009, Within-plate calc-alkaline rocks: Insights from alkaline mafic magma-peraluminous crustal melt hybrid appinites of the Central Iberian Variscan continental collision. Lithos, 110, 50-64. https://doi.org/10.1016/j.lithos.2008.12.007
  63. Seo, J., Choi, S.-G. and Oh, C.W., 2010, Petrology, geochemistry, and geochronology of the post-collisional Triassic mangerite and syenite in the Gwangcheon area, Hongseong Belt, South Korea. Gondwana Research, 18, 479-496. https://doi.org/10.1016/j.gr.2009.12.009
  64. Shin, B.W., So, C.S., Park, B.H. and Lee, S.H., 1989, Geological report of Haemi sheet (1:50,000). Geological and Mineral Institute of Korea, 15p.
  65. Su, Y., Zheng, J., Griffin, W.L., Zhao, J., Tang, H., Ma, Q. and Lin, X., 2012, Geochemistry and geochronology of Carboniferous volcanic rocks in the eastern Junggar terrane, NW China: Implication for a tectonic transition. Gondwana Research, 22, 1009-1029. https://doi.org/10.1016/j.gr.2012.01.004
  66. Sun, S.S. and McDonough, W.F., 1989, Chemical and isotopic systematic of oceanic basalt: implications for mantle composition and processes. In Magmatism in the ocean basins (eds. Saunders, A.D. and Norry, M.J.), Geological Society Special Publication 42, The Geological Society of London, 313-345.
  67. Whitford, D.J., Nicholls, I.A. and Taylor, S.R., 1983, Spatial variations in the geochemistry of Quaternary lavas across the Sunda Arc in Java and Bali. Contribution to Mineralogy and Petrology, 70, 341-356. https://doi.org/10.1007/BF00375361
  68. Wiebe, R.A., 1993, The Pleasant Bay layered grabbro-diorite, coastal Maine: Ponding and crystallization of basaltic injections into a silicic magma chamber. Journal of Petrology, 34, 461-489. https://doi.org/10.1093/petrology/34.3.461
  69. Wiebe, R.A., 2016, Mafic replenishments into floored silicic magma chambers. American Mineralogist, 101, 297-310. https://doi.org/10.2138/am-2016-5429
  70. Wiebe, R.A. and Collins, W.J., 1998, Depositional features and stratigraphic sections in granitic plutons: implications for the emplacement and crystallization of granitic magma. Journal of Structural Geology, 20, 1273-1289. https://doi.org/10.1016/S0191-8141(98)00059-5
  71. Williams, I.S., 1998, U-Th-Pb geochronology by ion microprobe. In Applications of microanalytical techniques to understanding mineralizing processes (eds. McKibben, M.A., Shanks, W.C.P. and Ridley, W.I.), Reviews in Economic Geology, 7, 1-35.
  72. Williams, I.S., Cho, D.L. and Kim, S.W., 2009, Geochronology, and geochemical and Nd-Sr characteristics, of Triassic plutonic rocks in the Gyeonggi Massif, South Korea: constraints on Triassic post-collisional magmatism. Lithos, 107, 239-256. https://doi.org/10.1016/j.lithos.2008.10.017
  73. Yang, D.-B, Xu, W.-L., Pei, F.-P., Yang, C.-H. and Wang, Q.-H., 2012, Spatial extent of the influence of the deeply subducted South China Block on the southeastern North China Block: Constraints from Sr-Nd-Pb isotopes in Mesozoic mafic igneous rocks. Lithos, 136-139, 246-260. https://doi.org/10.1016/j.lithos.2011.06.004
  74. Yang, J.-H., Chung, S.L., Zhai, M.G. and Zhou, X.H., 2004, Geochemical and Sr-Nd-Pb isotopic compositions of mafic dikes from the Jiaodong Peninsula, China: evidence for vein-plus-peridotite melting in the lithospheric mantle. Lithos, 73, 145-160. https://doi.org/10.1016/j.lithos.2003.12.003
  75. Yi, S.-B., 2010, Petrological and mineralogical study of Jurassic mafic intrusive rocks related to the magma mixing/mingling processes: Focussed on the Dangjin area. Master Dissertation, Korea University, 109p.
  76. Yi, S.-B., Oh, C.W., Lee, S.-Y., Choi, S.-G., Kim, T. and Yi, K., 2016, Triassic mafic and intermediate magmatism associated with continental collision between the North and South China Cratons in the Korean Peninsula. Lithos, 246-247. 149-164. https://doi.org/10.1016/j.lithos.2015.12.026
  77. Zhai, M.G., Zhang, Y.B., Zhang, X.H., Wu, F.Y., Peng, P., Li, Q.L., Hou, Q.L., Li, T.S. and Zhao, L., 2016, Renewed profile of the Mesozoic magmatism in Korean Peninsula: Regional correlation and broader implication for cratonic destruction in the North China Craton. Science China Earth Science, 59, 2355-2388. https://doi.org/10.1007/s11430-016-0107-0
  78. Zhang, H.-F., 2007, Temporal and spatial distribution of Mesozoic mafic magmatism in the North China Craton and implications for secular lithospheric evolution. In Mesozoic sub-continental lithospheric thinning under Eastern Asia (eds. Zhai, M.-G., Windley, B.F., Kusky, T.M. and Meng, Q.R.), Geological Society Special Publication 280, The Geological Society of London, 35-54.
  79. Zhao, G., Sun, M., Wilde, S.A. and Li, S., 2005, Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Research, 137, 149-172.
  80. Zhao, Z.F., Dai, L.Q. and Zheng, Y.F., 2015, Two types of the crust-mantle interaction in continental subduction zones. Science China: Earth Sciences, 58, 1269-1283. https://doi.org/10.1007/s11430-015-5136-0
  81. Zhong, Y., Ma, C., Liu, L., Zhao, J., Zheng, J., Nong, J. and Zheng, Z., 2014, Ordovician appinites in the Wugongshan Domain of the Cathaysia Block, South China: Geochronological and geochemical evidence for intrusion into a local extensional zone within an intracontinental regime. Lithos, 198-199, 202-216. https://doi.org/10.1016/j.lithos.2014.04.002