CHIME Zircon Age of the Gamaksan Alkaline Meta-Granitoid in the Northwestern Margin of the Gyeonggi Massif, Korea, and its Tectonic Implications

경기육괴 북서 연변부 감악산 알칼리 변성화강질암의 CHIME 저어콘 연대와 지체구조적 의의

  • Cho, Deung-Lyong (Division of Geology and Geoinformation, Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Seung-Ryeol (Division of Geology and Geoinformation, Korea Institute of Geoscience and Mineral Resources) ;
  • Suzuki, Kazuhiro (Center for Chronological Research, Nagoya University)
  • 조등룡 (한국지질자원연구원 지질기반정보연구부) ;
  • 이승렬 (한국지질자원연구원 지질기반정보연구부) ;
  • Published : 2007.09.30

Abstract

We carried on CHIME zircon age dating for the Gamaksan alkaline meta-granitoid (GAM) from the northwestern margin of the Gyeonggi massif, and obtained a timing of regional metamorphism at $247{\pm}14Ma$ (n=103, MSWD=0.92). The age is compatible with Permo-Triassic regional metamorphic ages from the Imjingang Belt which has been regarded as possible eastward extension of Triassic collisional belt in China. Considering an extensional ductile shearing of the Gyeonggi (Kyonggi) Shear Zone which deformed GAM occurred at 226 Ma with temperature condition about $500^{\circ}C$ (Kim et al., 2000), and the Late Triassic to Early Jurassic Daedong Group unconformably overlies on top of the ductile shear zone, cooling rate of GAM over the period can be estimated as $18{\sim}10^{\circ}C/Ma$. Since new zircon begin to pow at temperature higher than upper-amphibolite facies condition (${\sim}700^{\circ}C$), cooling rate of GAM from peak metamorphism (247 Ma) to deposition of the Daedong G.oup (${\sim}$Early Jurassic) would be higher than $10^{\circ}C/Ma$. Such rapid cooling rate is compatible with that reported from exhumation stage of the Dabie-Sulu Belt, and supports an idea that the Gyeonngi massif is a part of Permo-Triassic orogenic belt in East Asia.

경기육괴 북서 연변부에 분포하는 감악산 알칼리 변성화강암질암(GAM)에 대한 CHIME 저어콘 연대 측정을 실시하여 $247{\pm}14Ma$(n=103, MSWD=0.92)의 광역변성작용 연대를 구하였다. 이 연대는 임진강대에서 보고된 광역변성작용의 시기와 일치하며, 또한 중국의 페름기-트라이아스기 대륙충돌관련 고압 내지 초고압 광역변성작용 시기와도 일치한다. GAM을 변형시킨 경기전단대의 연성전단작용이 226 Ma에 $500^{\circ}C$의 조건에 형성되었고(Kim et al., 2000) 이를 부정합으로 피복하는 대동층군의 퇴적시기가 트라이아스기 후기 내지 쥬라기 초기인 점을 감안하면 이 기간 동안 GMA의 냉각속도는 $18{\sim}10^{\circ}C/Ma$이다. 또한 저어콘이 상부 각 섬암상의 온도조건인 $700^{\circ}C$ 이상에서 재성장하기 시작하는 것을 고려하면 GAM의 최고 변성시기인 247 Ma부터 쥬라기 초기까지 GAM의 냉각속도는 최소 $10^{\circ}C/Ma$가 된다. 이러한 빠른 냉각속도는 중국 다비-술루 대륙충돌대에서 관찰되는 섭입지각의 융기에 따른 냉각속도와 유사하다. 따라서 적어도 경기육괴 북서부 지역은 중국 대륙충돌대와 유사한 동시기 변성조산대에 대비될 수 있음을 지시한다.

Keywords

References

  1. 기원서, 조등룡, 김복철, 진광민, 2005, 포천도폭 지질조사보고서 1:50,5000. 한국지질자원연구소, 66p
  2. 유강민, 권영인, 전희영, 1992, 연천지역에 분포하는 대동층군의 층서와 사암의 광물조성. 지질학회지, 28, 152-166
  3. 이병주, 김유봉, 이승렬, 김정찬, 강필종, 최현일, 진명식, 1999, 1:250,000 서울-남천점 지질도폭 설명서. 한국자원연구소, 64p
  4. 진희영, 봉필윤, 이호영, 최성자, 김복철, 권영인, 1988, 경기탄전지역 함탄퇴적분지의 생층서 연구. 한국동력자원연구소, KR-88-1A, 41p
  5. 조등룡, 2004, 저어콘 아입자 분석을 위한 효율적인 광물분리 및 시료준비 방법. 암석학회지, 13, 126-132
  6. 최성자, 이승렬, 김규봉, 김준락, 김복철, 1998, 문산도폭 지질조사보고서 1:50,000. 한국자원연구소, 79p
  7. Amli, R. and Griffin, W.L., 1975, Microprobe analyses of REE minerals using empirical correction factors. American Mineralogist, 60, 599-606
  8. Asami, M., Suzuki, K. and Grew, E.S., 2002, Chemical ThIf-total Pb dating by electron microprobe analysis of monazite, xenotime and zircon from the Archean Napier Complex, East Antarctica: evidence for ultra-high-temperature metamorphism at 2400 Ma. Precambrian Research, 114, 249-275 https://doi.org/10.1016/S0301-9268(01)00228-5
  9. Bence, A.E. and Albee, A.L., 1968, Empirical correction factors for the electron microanalysis of silicates and oxides. Journal of Geology, 76, 382-403 https://doi.org/10.1086/627339
  10. Cho, D.-L., Kwon S.-T., Jeon, E.-Y. and Armstrong, R., 2005, SHRIMP U-Pb zircon ages of metamorphic rocks from the Samgot Unit, Yeoncheon Complex in the Imjingang Belt, Korea: Implications for the Phanerozoic tectonics of East Asia. Geological Society of America Abstracts with Programs, 37, p. 388
  11. Cho, D.-L., Suzuki, K., Adachi, M. and Chwae, U., 1996, A preliminary CHIME age determination of monazite from metamorphic and granitic rocks in the Gyeonggi massif, Korea. Journal of Earth and Planetary Sciences, Nagoya University, 43, 49-65
  12. Cho, M., Kim, Y. and Ahn, J., 2007, Metamorphic evolution of the Imjingang Belt, Korea: Implications for Permo-Triassic collisional orogeny. International Geology Review, 49, 30-51 https://doi.org/10.2747/0020-6814.49.1.30
  13. Ernst, W.G. and Liou, J.G., 1995, Contrasting plate-tectonic styles of the Qinling-Dabie-Sulu and Franciscan metamorphic belts: Geology, 23, 353-356 https://doi.org/10.1130/0091-7613(1995)023<0353:CPTSOT>2.3.CO;2
  14. Faure, M., Lin, W., Monie, P., Le Breton, N., Poussineau, S., Panis, D. and Deloule, E., 2003, Exhumation tectonics of the ultrahigh-pressure metamorphic rocks in the Qinling orogen in east China: New petrological-structural-radiometric insights from the Shandong Peninsula: Tectonics, 22, 1019[doi:10.1029/2002TC001450]
  15. Hacker, B.R., Ratschbacher, L., Webb, L., McWilliams, M.O., Ireland, T., Calvert, A., Dong, S., Wenk, H.-R. and Chateigner, D., 2000, Exhumation of the ultra high-pressure continental crust in east central China: Late Triassic-Early Jurassic tectonic unroofing: Journal of Geophysical Research, 105, 13339-13364 https://doi.org/10.1029/2000JB900039
  16. Kato, T., Suzuki, K. and Adachi, M., 1999, Computer program for the CHIME age calculation. Journal of Earth and Planetary Sciences, Nagoya University, 46, 49-56
  17. Kim, J.-N., Ree, J.-H., Kwon, S.-T., Park, Y., Choi, S.-J. and Cheong, C.-S., 2000, The Kyonggi Shear Zone of the Central Korean Peninsula: Late Orogenic Imprint of the North and South China Collision. Journal of Geology, 108, 469-478 https://doi.org/10.1086/314412
  18. Kusiak, M.A., Kedzior, A., Paszkowski, M., Suzuki, K., Gonzalez-Alvarez, I., Wajsprych, B. and Doktor, M., 2006, Provenance implications of Th-U-Pb electron microprobe ages from detrital monazite in the Carboniferous Upper Silesia Coal Basin, Poland. Lithos. 88, 56-71 https://doi.org/10.1016/j.lithos.2005.08.004
  19. Lee, S.R., Cho, M., Cheong, C.-S., Kim, H. and Wingate, M.T.D., 2003, Age, geochemistry, and tectonic significance of Neoproterozoic alkaline granitoids in the northwestern margin of the Gyeonggi massif, South Korea. Precambrian Research, 2294, 1-14
  20. Liu, X., 1993, High-P metamorphic belt in central China and its possible eastward extension to Korea. Journal of the Petrological Society of Korea, 2, 9-18
  21. Oh, C.W, Kim, S.W, Choi, S.G., Zhai, M., Guo, J. and Krishnan, S., 2005, First Finding of Eclogite Facies Metamorphic Event in South Korea and Its Correlation with the Dabie-Sulu Collision Belt in China. The Journal of Geology, 113, 226-232 https://doi.org/10.1086/427671
  22. Oh, C.W., Kim, S.W. and Williams, I.S., 2006a, Spinel granulite in Odesan area, South Korea: Tectonic implications for the collision between the North and South China blocks. Lithos, 92, 557-575 https://doi.org/10.1016/j.lithos.2006.03.051
  23. Oh, C.W., Sajeev, K., Kim, S.W. and Kwon, Y.W., 2006b, Mangerite magmatism associated with a probable late Permian to Triassic Hongseong-Odesan collisional belt in South Korea. Gondwana Research, 9, 95-105 https://doi.org/10.1016/j.gr.2005.06.005
  24. Oh, C.W. and Kusky, T., 2007, The late Permian to Triassic Hongseong-Odesan collision belt in South Korea, and its tectonic correlation with China and Japan. International Geology Review, 49, 636-657 https://doi.org/10.2747/0020-6814.49.7.636
  25. Ree, J.H., Cho, M., Kwon, S.-T. and Nakamura, E., 1996, Possible eastward extension of Chinese collision belt in South Korea: the Imjingang belt. Geology, 24, 1071-1074 https://doi.org/10.1130/0091-7613(1996)024<1071:PEEOCC>2.3.CO;2
  26. Smellie, J.A.T., Cogger, N. and Herrington, J., 1978, Standards for quantitative microprobe determination of uranium and thoriurn with additional information on the chemical formulae of davidite and euxenite-polycrase. Chemical Geology, 22, 1-10 https://doi.org/10.1016/0009-2541(78)90016-5
  27. Suzuki, K. and Adachi, M., 1991a, Precambrian provenance and Silurian metamorphism of the Tsubonosawa paragneiss in the South. Kitakami terrane, revealed by the chemical Th-U-total Pb isochron ages of monazite, zircon and xenotime. Geochemical Journal, 25, 357-376 https://doi.org/10.2343/geochemj.25.357
  28. Suzuki, K. and Adachi, M., 1991b, The chemical Th-U-total Pb isochron ages of zircon and monazite form the Gray Granite of the Hida terrane, Japan. Journal of Earth and Planetary Sciences, Nagoya University, 38, 11-37
  29. Suzuki, K. and Adachi, M., 1994, Middle Precambrian detrital monazite and zircon from the Hida gneiss on Oki-Dogo Island, Japan: their origin and implication for the correlation of basement gneiss of Southwest Japan and Korea. Tectonophysics, 235, 277-292 https://doi.org/10.1016/0040-1951(94)90198-8
  30. Suzuki, K. and Adachi, M., 1998, Denudation history of the high T/P Ryoke metamorphic belt, southwest Japan: constraints from CHIME monazite ages of gneisses and granitoids. Journal of Metamorphic Geology, 16, 23-37 https://doi.org/10.1111/j.1525-1314.1998.00057.x
  31. Vavra, G., Schmid, R. and Gebauer, D., 1999, Internal morphology, habit and U- Th-Pb microanalysis of amphiboloite-to-granulite facies zircon: geochronology of the Ivrea Zone (Southern Alps). Contribution to Mineralogy and Petrology, 134, 380-404 https://doi.org/10.1007/s004100050492
  32. Yin, A. and Nie, S., 1993, An indentation model for the north and south china collision and the development of the Tan-Lu and Honam fault systems, Eastern Asia. Tectonics, 12, 801-813 https://doi.org/10.1029/93TC00313
  33. York, D., 1966, Least-squares fitting of a straight line. Canadian Journal of Physics, 44, 1079-1086 https://doi.org/10.1139/p66-090