• Title/Summary/Keyword: Triangular Mesh Generation

Search Result 62, Processing Time 0.024 seconds

Two Dimensional Automatic Quadrilateral Mesh Generation for Metal Forming Analysis (소성 가공 공정 해석을 위한 2차원 사각 요소망 자동 생성)

  • Kim, Sang-Eun;Yang, Hyun-Ik
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.3
    • /
    • pp.197-206
    • /
    • 2009
  • In a finite element analysis of the metal forming processes having large plastic deformation, largely distorted elements are unstable and hence they influence upon the result toward negative way so that adaptive remeshing is required to avoid a failure in the numerical computation. Therefore automatic mesh generation and regeneration is very important to avoid a numerical failure in a finite element analysis. In case of generating quadrilateral mesh, the automation is more difficult than that of triangular mesh because of its geometric complexity. However its demand is very high due to the precision of analysis. Thus, in this study, an automatic quadrilateral mesh generation and regeneration method using grid-based approach is developed. The developed method contains decision of grid size to generate initial mesh inside a two dimensional domain, classification of boundary angles and inner boundary nodes to improve element qualities in case of concave domains, and boundary projection to construct the final mesh.

Automatic Quadrilateral Element Mesh Generation Using Boundary Normal Offsetting In Various Two Dimensional Objects (다양한 2차원 형상에서의 외부 경계 절점 오프셋 방법을 이용한 자동 사각 요소 및 요소망 생성)

  • 김도헌;양현익
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.4
    • /
    • pp.270-277
    • /
    • 2003
  • In two dimensional mechanical design analysis, quadrilateral element mesh is preferred because it provides more accurate result than triangular element mesh. However, automation of quadrilateral element mesh generation is much more complex because of its geometrical complexities. In this study, an automatic quadrilateral element mesh generation algorithm based on the boundary normal offsetting method and the boundary decomposition method is developed. In so doing, nodes are automatically placed using the boundary normal offsetting method and the decomposition method is applied to decompose the designed domain into a set of convex subdomains. The generated elements are improved by relocation of the existing nodes based on the four criteria - uniformity, aspect ratio, skewness and taper degree. The developed algorithm requires minimal user inputs such as boundary data and the distance between nodes.

Machining Tool Path Generation for Point Set

  • Park, Se-Youn;Shin, Ha-Yong
    • International Journal of CAD/CAM
    • /
    • v.8 no.1
    • /
    • pp.45-53
    • /
    • 2009
  • As the point sampling technology evolves rapidly, there has been increasing need in generating tool path from dense point set without creating intermediate models such as triangular meshes or surfaces. In this paper, we present a new tool path generation method from point set using Euclidean distance fields based on Algebraic Point Set Surfaces (APSS). Once an Euclidean distance field from the target shape is obtained, it is fairly easy to generate tool paths. In order to compute the distance from a point in the 3D space to the point set, we locally fit an algebraic sphere using moving least square method (MLS) for accurate and simple calculation. This process is repeated until it converges. The main advantages of our approach are : (1) tool paths are computed directly from point set without making triangular mesh or surfaces and their offsets, and (2) we do not have to worry about no local interference at concave region compared to the other methods using triangular mesh or surface model. Experimental results show that our approach can generate accurate enough tool paths from a point set in a robust manner and efficiently.

Automatic Generation of Triangular Shell Element Meshes on Mid-Surface in Shell Structure (셸 구조물의 중간면에 대한 삼각형 셸 요소망의 자동생성)

  • Moon, Yeon-Cheol;Yang, Hyun-Ik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.451-460
    • /
    • 2007
  • The surface of 3D shell structure is created by using NURBS and nodes for generating finite element mesh on the surface are created by using external node offset method. In so doing the shortest distance between nodes on the top and bottom surface is searched and then the coordinates of nodes are determined by calculating the mid point of them in the middle of top and bottom surface. Triangular elements are formed on mid surface, and the average aspect ratio of the generated triangular elements are over 0.9.

Motion Estimation using Hierarchical Triangular Mesh and Fast Node Convergence (계층적 삼각형 메쉬를 이용한 움직임 추정과 노드의 수렴 고속화)

  • 이동규;이두수
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.2
    • /
    • pp.88-94
    • /
    • 2003
  • In this paper, we propose a hierarchical triangular mesh generation method based on the motion information and a fast rude convergence method. From the variance of Image difference we decide the region that subdivision is required and perform the adequate triangulation method that is possible to yield a successive hierarchical triangulation. For fast node convergence, in initial search, we use the refinement method that separate the backgroung and object region and maintain the mesh connection by using the bilinear interpolation. The simulation result demonstrate that proposed triangulation method have performance in PSNR than the conventional BMA or order mesh based method and refinement is appropriate for the case of the mesh size is small.

3D Automatic Mesh Generation Scheme for the Boundary Element Method (경계요소법을 위한 3차원 자동요소분할)

  • Lee, H.B.;Lee, S.H.;Kim, H.S.;Lee, K.S.;Hahn, S.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.935-937
    • /
    • 1993
  • This paper presents a three dimensional automatic mesh generation scheme for the boundary element method, and this scheme can be applicable to practical problems of complex shape. The geometry of the problem is expressed as an assemblage of linear Coon's surfaces, and each surface is made up of four edge curves which are defined in the form of a parametric function. Curves are automatically segmented according to their characteristics. With these segments of curves, interior points and triangular mesh elements are generated in the parametric plane using Lindholm's method, and then their projection on the real surface forms the initial mesh. The refinement of initial mesh is performed so that the discrete triangular planes are close to the real continuous surfaces. The bisection method is used for the refinement. Finally, interior points in the refined mesh are rearranged so as to make each element be close with an equilateral triangle. An attempt has been made to apply the proposed method to a DY(Deflection Yoke) model.

  • PDF

Tool-Path Generation using Sweep line Algorithm (스윕라인 알고리즘을 이용한 공구경로의 생성)

  • Seong, Kil-Young;Jang, Min-Ho;Park, Sang-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.1
    • /
    • pp.63-70
    • /
    • 2009
  • Proposed in the paper is an algorithm to generate tool-path for sculptured surface machining. The proposed algorithm computes tool path by slicing offset triangular mesh, which is the CL-surface (Cutter Location surface). Since the offset triangular mesh includes invalid triangles and self-intersections, it is necessary to remove invalid portions. For the efficient removal of the invalid portions, we extended the sweep line algorithm. The extended sweep line algorithm removes invalid portions very efficiently, and it also considers various degeneracy cases including multiple intersections and overlaps. The proposed algorithm has been implemented and tested with various examples.

Automatic Quadrilateral Mesh Generation Using Updated Paving Technique in Various Two Dimensional Objects (다양한 2차원 영역에서의 향상된 Paving법을 이용한 자동 사각 요소 생성)

  • Yang, Hyun-Ik;Kim, Myung-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1762-1771
    • /
    • 2003
  • In part of mechanical design analysis, quadrilateral mesh is usually used because it provides less approximate errors than triangular mesh. Over the decades, Paving method has been considered as the most robust method among existing automatic quadrilateral element mesh generation methods. However, it also has some problems such as unpredictable node projection and relatively large element generation. In this study, the aforementioned problems are corrected by updating the Paving method. In so doing, a part of node projection process is modified by classifying nodes based on the interior angles. The closure check process is also modified by adding more nodes while generating elements. The result shows well shaped element distribution in the final mesh without any aforementioned problems.

The development of a mesh generation program using contour line data (등고선 데이터를 이용한 산악지형 유동해석 격자생성 프로그램 개발 및 그 응용)

  • Chin S. M.;Won C. S.;Hur N.
    • Journal of computational fluids engineering
    • /
    • v.9 no.4
    • /
    • pp.7-12
    • /
    • 2004
  • In the present study a semi-automatic mesh generation program has been developed by using DXF file containing contour line data. The program consists of DXF file reader and mapping algorithm. Pre-generated 2-D planar mesh points are to be mapped one by one onto triangular surface whose three vertices are three nearest contour points surrounding the mapping point. The present program has been successfully tested for mesh generations for the road tunnel ventilation analysis and analysis of lava movement in mountain area.

Triangular Mesh Generation using non-uniform 3D grids (Non-uniform 3D grid를 이용한 삼각형망 생성에 관한 연구)

  • 강의철;우혁제;이관행
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1283-1287
    • /
    • 2003
  • Reverse engineering technology refers to the process that creates a CAD model of an existing part using measuring devices. Recently, non-contact scanning devices have become more accurate and the speed of data acquisition has increased drastically. However, they generate thousands of points per second and various types of point data. Therefore. it becomes a important to handle the huge amount and various types of point data to generate a surface model efficiently. This paper proposes a new triangular mesh generation method using 3D grids. The geometric information of a part can be obtained from point cloud data by estimating normal values of the points. In our research, the non-uniform 3D grids are generated first for feature based data reduction based on the geometric information. Then, triangulation is performed with the reduced point data. The grid structure is efficiently used not only for neighbor point search that can speed up the mesh generation process but also for getting surface connectivity information to result in same topology surface with the point data. Through this integrated approach, it is possible to create surface models from scanned point data efficiently.

  • PDF