• Title/Summary/Keyword: Triangular Channel

Search Result 66, Processing Time 0.024 seconds

Exergetic analysis for optimization of a rotating equilateral triangular cooling channel with staggered square ribs

  • Moon, Mi-Ae;Kim, Kwang-Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.3
    • /
    • pp.229-236
    • /
    • 2016
  • Exergetic analysis was introduced in optimization of a rotating equilateral triangular internal cooling channel with staggered square ribs to maximize the net exergy gain. The objective function was defined as the net exergy gain considering the exergy gain by heat transfer and exergy losses by friction and heat transfer process. The flow field and heat transfer in the channel were analysed using three-dimensional Reynolds-averaged Navier-Stokes equations under the uniform temperature condition. Shear stress transport turbulence model has been selected as a turbulence closure through the turbulence model test. Computational results for the area-averaged Nusselt number were validated compared to the experimental data. Three design variables, i.e., the angle of rib, the rib pitch-to-hydraulic diameter ratio and the rib width-to-hydraulic diameter ratio, were selected for the optimization. The optimization was performed at Reynolds number, 20,000. Twenty-two design points were selected by Latin hypercube sampling, and the values of the objective function were evaluated by the RANS analysis at these points. Through optimization, the objective function value was improved by 22.6% compared to that of the reference geometry. Effects of the Reynolds number, rotation number, and buoyancy parameter on the heat transfer performance of the optimum design were also discussed.

Integrated function evaluation of efficient micromixer and application to glucose-catalysts reaction (효율적인 Micromixer의 통합된 기능 평가 및 Glucose-Catalysts 반응에 적용)

  • Kim, Duck-Joong;Baek, Ju-Yeoul;Lee, Sang-Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.291-296
    • /
    • 2005
  • In this paper, the PDMS based micromixer having 3-dimension triangular structure has been developed for the reaction of samples in the micro volume. The mixing efficiency was measured according to the change of Reynolds number (Re: 0.08, 0.8, 8, 16) and channel height (100, 200, $300{\mu}m$). Total length of mixing region is 7.4 mm and the measured mixing efficiencies at the outlet were over 85 %. Within the mixing length 2.4 mm, the mixing efficiencies were more than 70 % at any Reynolds numbers, and this indicates the strong mixing has occurred inside the mixing channel due the triangular structures. By employing these 2 mixers, we have fabricated the microreactor to detect the glucose-catalysts reaction. The microreactor showed good reactivity of glucose and enzymes with the small amount of sample solution.

Evaluating Distribution Trends of Classification Accuracy by Triangular Training Operator in SAR/VIR FCC : A Case Study of Songkhla Lake Basin in Thailand (SAR/VIR FCC에서 삼각 트레이닝 도구에 의한 분류정확도 분포추세 평가: 태국의 송클라 호수 유역을 사례로)

  • Jung Sup Um
    • Journal of the Korean Geographical Society
    • /
    • v.38 no.3
    • /
    • pp.375-388
    • /
    • 2003
  • This study mainly focuses on evaluating how the triangular training operator could improve classification accuracy in SAR(Synthetic Aperture Radar) and VIR FCC(Visible Infra-red, False Colour Composite). The techniques for the determination of the most informative SAR/VIR combinations in the triangular space diagram, as developed tv the author of the paper, are given and the results obtained are presented. The SAR alone, VIR alone and SAR/VIR FCC classification showed trends for gradual improvement of accuracy. Accuracy distribution pattern for individual classes could be explained closely related to SAR/VIR signature components in the process of the triangular synergistic training. Due to contribution of SAR signature in training samples, it was possible to isolate major terrain features such as cloud cover area and roughness target with acceptable spatial precision. It is anticipated that this research output could be used as a valuable reference for distribution trends of classification accuracy obtained by triangular channel space based training in synergistic application.

Numerical Study of Heat Transfer Enhancement on Microchannel Plate Heat Exchanger with Channel Shape (채널 형상에 따른 마이크로채널 판형 열교환기 열전달 성능 향상에 관한 수치 연구)

  • Jeon, Seung-Won;Kim, Yoon-Ho;Lee, Kyu-Jung
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1888-1893
    • /
    • 2007
  • In this study, the microchannel plated heat exchanger were numerically studied for the enhancement of heat transfer in the channel configuration. Unit cold and hot fluid region with the microchannel were modeled and periodic boundary condition at the side wall was applied to continuously repeating geometry. The material of micro-structured plate is STS304 and working fluid is water. Triangular obstacles were placed in micro channel to enhance heat transfer. The performance of microchannel plated heat exchangers were numerically investigated with various obstacle configuration and Reynolds number under the parallel and counter flows. Heat transfer rate has increased about 18% compared with straight channel, but pressure drop also increased about 3.5 times. The main factor of increasing of pressure drop and heat transfer rate is considered that the momentum was lost to collide against obstacles, generation of secondary flow and boundary layer separation, wake and vortex forming phenomena.

  • PDF

Adaptive Resource Allocation Algorithm with GTD in Downlink MU-MIMO Channel (다중 사용자 다중 안테나 하향링크 채널에서 GTD 기반의 적응적인 자원 할당 기법)

  • Choi, Seung-Kyu;Lee, Chung-Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.11
    • /
    • pp.53-59
    • /
    • 2011
  • We propose an adaptive resource allocation algorithm with generalized triangular decomposition scheme in downlink multi-user multiple-input-multiple-output channel to maximize the system throughput when we adopt the modulation scheme such as BPSK, QPSK, 16QAM, and 64QAM. The proposed scheme also considers an bit-error-rate performance as well as system throughput while performing resource allocation. We present simulation results to show that the proposed scheme achieves the system throughput up to 2bit difference by capacity and has better BER performance than SVD based resource allocation scheme in all SNR regions.

PIV Investigations of the Flow Mixing Enhancement by Pulsatile Flow in a Grooved Channel (맥동유동에 의한 그루브 채널내 유동혼합 촉진에 관한 PIV 이용 연구)

  • 김동욱;김서영;이대영;이윤표
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.4
    • /
    • pp.324-331
    • /
    • 2004
  • Particle Image Velocimetry (PIV) measurements have been carried out to investigate the pulsatile flow characteristics in a triangular grooved channel. The results showed that a vortex was generated at the tip of the groove and flowed into the groove rotating inside during the acceleration phase of the main stream promoting the mixing of the fluid. Then, at the deceleration phase of the main stream, the vortex entrained fluid from the relatively slow moving main stream to grow bigger than the groove size. Finally the vortex was ejected to the main stream carrying the fluid away from the groove, resulting in the enhancement of mixing between the stagnant fluid in the groove and the main stream in the channel. It was found that the fluid mixing enhancement is maximized when the pulsatile period is the same as the time duration which the vortex takes to grow larger enough to fill the groove and to be ejected to the main stream.

An Estimation of Discharge Coefficients with the Variations of Side Weir Shape (횡월류위어의 형상에 따른 유량자수 추정)

  • Song, Jai-Woo;Park, Sung-Sik;Kim, Ji-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.1 s.174
    • /
    • pp.51-62
    • /
    • 2007
  • To estimate more accurately the outflow over a sharp crested side weir, it is necessary to analyze the flow characteristics over side weir and to estimate the discharge coefficient in the weir equation. The purpose of this study is to estimate the discharge coefficients of sharp crested rectangular and triangular side weirs by means of hydraulic model experiments with the variations of upstream Froude number in the main channel and length and apex angle. Experimental results show that the discharge coefficients depend on the shape and geometric conditions of side weir as well as the upstream Froude number in the main channel. Through the multiple regression analysis, formulas of discharge coefficient for rectangular and triangular types are proposed and its applicability is confirmed by comparing estimated and measured discharges over side weirs.

A Study on the Flow Characteristics around Underwater Triangular Structure (삼각형상 수중구조물 주위의 유동특성에 관한 연구)

  • Han, Won-Hui;Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.1
    • /
    • pp.21-27
    • /
    • 2008
  • Triangular structure is used as basic shape of artificial structures for generating the upwelling current in order to make rich fishing ground at sea. Artificial upwelling current could bring the deep sea water containing a lot of nutrients from the bottom up to the surface. The purpose of this study is to examine the flow characteristics around underwater triangular structure with various stratification parameter. An experimental study was carried out for the triangular structure model in the circulating water channel to investigate flow characteristics by flow visualization method. A velocity fields around the underwater structure were measured by particle image velocimetry(PIV). The experimental results showed that the upwelling effect at the back and upper region of the structure could be best when the water depth was 2 times of the structure height and the stratification parameter was approximately 3.0. These quantitative data will be useful to determine the functional efficiency cf artificial upwelling structures.

  • PDF

Optimal Design Method of the Cooling Channel for Manufacturing the Hot Stamped Component with Uniform Strength and Application to V-bending Process (균일 강도 핫스템핑 부품의 제조를 위한 냉각채널 최적 설계 및 V-벤딩 공정에의 적용)

  • Lim, Woo-Seung;Choi, Hong-Seok;Nam, Ki-Ju;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.1
    • /
    • pp.63-72
    • /
    • 2011
  • In recent years, hot-stamped components are more increasingly used in the automotive industry in order to reduce weight and to improve the strength of vehicles. In hot stamping process, blank is hot formed and press hardened in a tool. However, in hot stamping without cooling channel, temperature of the tool increases gradually in mass production thus cannot meet the critical cooling rate to obtain high strength over 1500MPa. Warpage occurs in the hot stamped component due to non-uniform stress state caused by unbalanced cooling. Therefore, tools should be uniformly as well as rapidly cooled down by the coolant which flows through cooling channel. In this paper, optimal design method of cooling channel to obtain uniform and high strength of the component is proposed. Optimized cooling channel is applied to the hot press V-bending process. As a result of measuring strength, hardness and microstructure of the hot formed parts, it is known that the design methodology of cooling channel is effective to the hot stamping process.

PTV velocity field measurements of flow around a triangular prism located behind a porous fence (다공성 방풍벽 뒤에 놓인 삼각 프리즘 주위 유동의 PTV 속도장 측정)

  • Kim, Hyeong-Beom;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.5
    • /
    • pp.708-715
    • /
    • 1998
  • The shelter effect of a porous wind fence on a triangular prism was experimentally investigated in a circulating water channel. A porous fence of porosity .epsilon.=38.5% was installed in front of the prism model. The fence and prism model were embedded in a turbulent boundary layer. The instantaneous velocity fields around the fence and prism model were measured by using the instantaneous velocity fields around the fence and prism model were measured by using the 2-frame PTV(Particle Tracking Velocimetry) system. By installing the fence in front of the prism, the recirculation flow region decreases compared with that of no fence case. The porous fence also decreases the mean velocity, turbulent intensity and turbulent kinetic energy around the prism. Especially, at the top of the prism, the turbulent kinetic energy is about half of that without the fence.