• Title/Summary/Keyword: Trial and error method

Search Result 574, Processing Time 0.034 seconds

Hereditary Tyrosinemia Type I (Hereditary Tyrosinemia Type I 환아의 NTBC 치료 경험)

  • Kang, Hyun-Young;Kim, Sook Za;Song, Wung Joo;Chang, Mi-Young
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.4 no.1
    • /
    • pp.13-17
    • /
    • 2004
  • Hereditary tyrosinemia type I (fiunarylacetoacetate hydrolase deficiency) is an autosomal recessive inborn error of tyrosine metabolism that results in liver failure in infancy or chronic liver disease with cirrhosis, frequently complicated by hepatocellular carcinoma in childhood or early adolescence. Early detection of this condition is very important to early intervention for better prognosis of patients. Neonatal screening test using tandem mass spectrometry (MS-MS) is performed, and this method facilitates detection of the inborn error of tyrosine. For early treatment of tyrosinemia type I, phenylalanine and tyrosine restricted diet and NTBC (2-nitro-4-trifluoromethylbenzoyl-1,3-cyclohexanedione) for inhibition of succinylacetone production are recommended. We studied a 10-month-old Korean boy with tyrosinemia type I whose condition was not discovered earlier through conventional neonatal screening testing available in Korea. The patient presented hyperbilirubinemia, liver failure, bleeding tendency, colicky pain and skin melanin pigmentation in neonatal period. MS-MS made it possible to detect tyrosinemia type I and allowed immediate treatment of the patient. This was the first successful NTBC trial on tyrosinemia type I patient in Korea.

  • PDF

The Determination method of Available Bandwidth for Automation of the Split-Spectrum Processing (스플릿-스펙트럼 처리의 자동화를 위한 가용대역폭의 결정방법)

  • Ko, Dae-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.6
    • /
    • pp.27-31
    • /
    • 1995
  • In this paper, the determination method of available bandwidth for automation of the split-spectrum processing(SSP) has been studied. The SSP is used for the visibility enhancement of the ultrasonic signal with grain noise. Even though the SSP has proved useful in signal-to-noise ratio enhancement, its application and automation have been limited due to ambiguity in the determination of available bandwidth. Until recently, it is the usual practice to optimize the available bandwidth by trial and error. The spectral histogram is the statistical distribution of the spectral windows that is selected by the minimization algorithm with the whole band of the spectrum of the received ultrasonic signal. Since the available bandwidth can be determined adaptively using spectral histogram, this method can be used for automation of the SSP. In order to evaluate the determination technique of the available bandwidth using spectral histogram, this method is applied to experimental ultrasonic data. The experimental results show that the spectral histogram is an efficient method for determination of the available bandwidth and automation of the SSP.

  • PDF

The Automatical Process Map Generation Using Network Representation In Radiopharmaceutical Synthesis (네트워크 모델링을 통한 방사성의약품 합성 프로세스 맵 자동생성 시스템)

  • Lee, Cheol-Soo;Heo, Eun-Young;Kim, Jong-Min;Kim, Dong-Soo
    • IE interfaces
    • /
    • v.24 no.2
    • /
    • pp.156-163
    • /
    • 2011
  • The radiopharmaceutical synthesis for PET (positron emission tomography) is composed of chemical reactions using automated synthetical equipment. Due to the radioactive material, the automated equipment is being frequently developed to replace human operators who conduct dangerous, repetitive and dexterous operations. As to operation, the manipulating program is commonly coded using the spread sheet while the whole actuators are mapped in every step. The process map (program) is changed according to such parameters as temperature of reactor, keeping time, mixture sequence and amount of reagent. In cases of customizing the automated synthetical equipment or developing the new radiopharmaceuticals, lots of experiments should be conducted and the programming mistake is not allowed as it can lead abnormal control of the equipment to leak the radioactive materials. The exact process map has depended on trial and error manner. Thus, this study developed the methodology to tabulate the synthetical process to convert the process map automatically while the synthetical module formation is represented by a network model. The proposed method is validated using the actual radiopharmaceutical synthetical procedure.

Design of Fuzzy Controller for Two Wheeled Inverted Pendulum Robot Using Neural Network (신경회로망을 이용한 이륜 역진자 로봇의 퍼지제어기 설계)

  • Jung, Gun-Oo;An, Tae-Hee;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.2
    • /
    • pp.228-236
    • /
    • 2012
  • In this paper, a controller for two wheeled inverted pendulum robot is designed to have more stable balancing capability than conventional controller. Fuzzy control structure is chosen for the two wheeled inverted pendulum robot, and fuzzy membership function factors for the controller are obtained for specified 3 users' weights using trial-and-error method. Next a neural network is employed to generate fuzzy membership function factors for more stable control performance when the user's weight is arbitrarily selected. Through the simulation study we find that the designed fuzzy controller using the neural network is superior to the conventional fuzzy controller.

Design of Self-Tuning Fuzzy Logic Controllers using Genetic Algorithms (유전알고리즘을 이용한 자기동조 퍼지 제어기의 설계)

  • Suh, Jae-Kun;Kim, Tae-Eun;Kwon, Hyuk-Jin;Kim, Lark-Kyo;Nam, Moon-Hyon
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1374-1376
    • /
    • 1996
  • In this paper We proposed a new method to generate fuzzy logic controllers through genetic algorithm(GA). In designing of fuzzy logic controllers encounters difficulties in the selection of optimized member-ship functions, gains and rule base, which is conventionally achieved by a tedious trial-and-error process. This paper develops genetic algorithms for automatic design of high performance fuzzy logic controllers which can overcome nonlinearities in many engineering control applications. The rule-base is coded in base-7 strings by generated from random function. Which can be presented in discrete fuzzy linguistic value, and using membership function with Gaussian curve. To verify the validity of this fuzzy logic controller it is compared with conventional fuzzy logic controller(FLC) and PID controller.

  • PDF

Implementation of a Fuzzy Control System for Two-Wheeled Inverted Pendulum Robot based on Artificial Neural Network (인공신경망에 기초한 이륜 역진자 로봇의 퍼지 제어시스템 구현)

  • Jeong, Geon-Wu;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.1
    • /
    • pp.8-14
    • /
    • 2013
  • In this paper, a control system for two wheeled inverted pendulum robot is implemented to have more stable balancing capability than the conventional control system. Fuzzy control structure is chosen for the two wheeled inverted pendulum robot, and fuzzy membership function factors for the control system are obtained for 3 specified weights using a trial-and-error method. Next a neural network is employed to generate fuzzy membership function factors for more stable control performance when the weight is arbitrarily selected. Through some experiments, we find that the proposed fuzzy control system using the neural network is superior to the conventional fuzzy control system.

Experimental validation of FE model updating based on multi-objective optimization using the surrogate model

  • Hwang, Yongmoon;Jin, Seung-seop;Jung, Ho-Yeon;Kim, Sehoon;Lee, Jong-Jae;Jung, Hyung-Jo
    • Structural Engineering and Mechanics
    • /
    • v.65 no.2
    • /
    • pp.173-181
    • /
    • 2018
  • In this paper, finite element (FE) model updating based on multi-objective optimization with the surrogate model for a steel plate girder bridge is investigated. Conventionally, FE model updating for bridge structures uses single-objective optimization with finite element analysis (FEA). In the case of the conventional method, computational burden occurs considerably because a lot of iteration are performed during the updating process. This issue can be addressed by replacing FEA with the surrogate model. The other problem is that the updating result from single-objective optimization depends on the condition of the weighting factors. Previous studies have used the trial-and-error strategy, genetic algorithm, or user's preference to obtain the most preferred model; but it needs considerable computation cost. In this study, the FE model updating method consisting of the surrogate model and multi-objective optimization, which can construct the Pareto-optimal front through a single run without considering the weighting factors, is proposed to overcome the limitations of the single-objective optimization. To verify the proposed method, the results of the proposed method are compared with those of the single-objective optimization. The comparison shows that the updated model from the multi-objective optimization is superior to the result of single-objective optimization in calculation time as well as the relative errors between the updated model and measurement.

Estimation of Mean and Variance for $NH_3-N$ data of Puyeo Intake (부여 취수장의 $NH_3-N$자료에 대한 평균 및 분산추정)

  • Kim, Hyeong-Su;Jeong, Geon-Hui;Kim, Eung-Seok;Kim, Jung-Hun
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.4
    • /
    • pp.357-364
    • /
    • 2001
  • Sometimes the observed data is too small to discriminate it from noise of the instrument. Say, the data can be recorded as below DL(Detection Level) value. Even though the data below Detection Level(BDL) is small vague, it can be resulted in wrong estimates for mean and variance. However, in practice, the BDL data is generally eliminated as N.D. (Not Detected) and do not record it in Korea. This study investigates the distributions according to the data values of ammonia concentration (NH$_3$-N) in Puyeo intake. Also we try to find out DL value and an appropriate method for the estimations of mean and variance of BDL values that can be discriminate the distributions. The DL is estimated by trial and error method. The appropriate method for the estimations of mean and variance of above the detection level(ADL)and BDL dada sets is selected, and the mean and variance are estimated. As a result, it is found that the Bias Corrected Maximum Likelihood Estimator is the most accurate method for NH$_3$-N in Puyeo intake.

  • PDF

Computational Fluid Dynamics for Enhanced Uniformity of Mist-CVD Ga2O3 Thin Film (Ga2O3초음파분무화학기상증착 공정에서 유동해석을 이용한 균일도 향상 연구)

  • Ha, Joohwan;Lee, Hakji;Park, Sodam;Shin, Seokyoon;Byun, Changwoo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.81-85
    • /
    • 2022
  • Mist-CVD is known to have advantages of low cost and high productivity method since the precursor solution is misting with an ultrasonic generator and reacted on the substrate under vacuum-free conditions of atmospheric pressure. However, since the deposition distribution is not uniform, various efforts have been made to derive optimal conditions by changing the angle of the substrate and the position of the outlet to improve the result of the preceding study. Therefore, in this study, a deposition distribution uniformity model was derived through the shape and position of the substrate support and the conditions of inlet flow rate using the particle tracking method of computational fluid dynamics (CFD). The results of analysis were compared with the previous studies through experiment. It was confirmed that the rate of deposition area was improved from 38.7% to 100%, and the rate of deposition uniformity was 79.07% which was higher than the predicted result of simulation. Particle tracking method can reduce trial and error in experiments and can be considered as a reliable prediction method.

Rigid-Plastic Explicit Finite Element Formulation for Two-Dimensional Analysis of Sheet Metal Forming Processes (2차원 박판성형공정 해석을 위한 강소성 외연적 유한요소 수식화)

  • An, Dong-Gyu;Jeong, Dong-Won;Jeong, Wan-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.88-99
    • /
    • 1996
  • The explicit scheme for finite element analysis of sheet metal forming problems has been widely used for providing practical solutions since it improves the convergency problem, memory size and computational time especially for the case of complicated geometry and large element number. The explicit schemes in general use are based on the elastic-plastic modeling of material requiring large computataion time. In the present work, a basic formulation for rigid-plastic explicit finite element analysis of plain strain sheet metal forming problems has been proposed. The effect of some basic parameters involved in the dynamic analysis has been studied in detail. Thus, the effective ranges of parameters have been proposed for numerical simultion by the rigid-plastic explicit finite element method. A direct trial-and-error method is introduced to treat contact and friction. In computation, sheet material is assumed to possess normal anisotropy and rigid-plastic workhardening characteristics. In order to show the validity and effectiveness of the proposed explicit scheme, computations are carried out for cylindrical punch stretching and the computational results are compared with those by the implicit scheme as well as with a commercial code. The proposed rigid-plastic exlicit finite element method can be used as a robust and efficient computational method for analysis of sheet metal forming.