• Title/Summary/Keyword: Trial And Error Method

Search Result 572, Processing Time 0.026 seconds

Numerical Analysis on the Thermal Characteristics of a Ventilated Disc Brake (벤틸레이티드 디스크 브레이크의 열적특성에 관한 수치해석)

  • 김청균;성부용
    • Tribology and Lubricants
    • /
    • v.14 no.1
    • /
    • pp.37-44
    • /
    • 1998
  • The adequate design of a passenger car's braking system, which is directly related to the safety of a car, is very important since the safety is an essential design parameter of a car to keep men and car from the damage. The general method to verify the performance and safety of a braking system is still based on the trial-error experiments. However, the design based on experiments costs high and is time-consuming method. So it is desirable to use the numerical analysis method for the reduction of cost and time in the design of a braking system. In this paper, the thermal characteristic of a ventilated disc brake has been analyzed as a function of the car speed and a deceleration during quick braking.

Optimal Design of the Hoist Hydraulic System Including the Counter Balance Valve and Differential Cylinder Circuit (카운터밸런스밸브와 차동실린더회로를 포함한 호이스트 유압장치의 최적설계)

  • Lee, S.R.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.5 no.1
    • /
    • pp.13-19
    • /
    • 2008
  • The typical hydraulic system of hoist is composed of a hydraulic supply unit, a directional control valve, counter balance valve, and flow control valves. The flow capacity coefficients of flow control valves should be adjusted so that the hoist is operated at moderate speed and the hydraulic energy loss is minimized. However, it is difficult to adjust the flow coefficients of flow control valves by trial and error for optimal operation. Here, the steady state model of the hoist hydraulic system including the differential cylinder circuit is derived and the optimal flow capacity coefficients of flow control valves are obtained using the complex method that is one kind of constrained direct search method.

  • PDF

Queen-bee and Mutant-bee Evolution for Genetic Algorithms

  • Jung, Sung-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.3
    • /
    • pp.417-422
    • /
    • 2007
  • A new evolution method termed queen-bee and mutant-bee evolution is based on the previous queen-bee evolution [1]. Even though the queen-bee evolution has shown very good performances, two parameters for strong mutation are added to the genetic algorithms. This makes the application of genetic algorithms with queen-bee evolution difficult because the values of the two parameters are empirically decided by a trial-and-error method without a systematic method. The queen- bee and mutant-bee evolution has no this problem because it does not need additional parameters for strong mutation. Experimental results with typical problems showed that the queen-bee and mutant-bee evolution produced nearly similar results to the best ones of queen-bee evolution even though it didn't need to select proper values of additional parameters.

Design of an LQR Controller Considering Pole's Moving-Range (근의 이동범위를 고려한 LQR 제어기 설계)

  • Park, Min-Ho;Hong, Suk-Kyo;Lee, Sang-Hyuk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.10
    • /
    • pp.864-869
    • /
    • 2005
  • This paper proposes a new method for LQR controller design. It is unsystematic and difficult to design an LQR controller by trial and error. The proposed method is capable of systematically calculating weighting matrices for desired pole(s) by the pole's moving-range in S-plane and the relational equation between closed-loop pole(s) and weighting matrices. This will provide much-needed functionality to apply LQR controller. The example shows the feasibility of the proposed method.

Optimization of Welding Parameters for Resistance Spot Welding of Trip Steel Using Response Surface Methodology

  • Park, H.;Kim, T.;Rhee, S.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.2
    • /
    • pp.47-50
    • /
    • 2002
  • Because of the environmental problems, automotive companies are trying to reduce the weight of car body. Therefore, TRIP(TRansformation Induced Plasticity) steels, which have high strength and ductility have been developed. Welding process is a complex process; therefore deciding the optimal welding conditions on the basis of experimental data is an effective method. However, trial-and-error method to decide the optimal conditions requires too many experiments. To overcome these problems, response surface methodology was used. Response surface methodology is a collection of mathematical and statistical techniques that are used in the modeling and analysis of problems in which a response of interest is influenced by several variables and the objective is to optimize this response. This method was applied to the resistance spot welding process of the TRIP steel to optimize the welding parameters.

  • PDF

Searching a global optimum by stochastic perturbation in error back-propagation algorithm (오류 역전파 학습에서 확률적 가중치 교란에 의한 전역적 최적해의 탐색)

  • 김삼근;민창우;김명원
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.3
    • /
    • pp.79-89
    • /
    • 1998
  • The Error Back-Propagation(EBP) algorithm is widely applied to train a multi-layer perceptron, which is a neural network model frequently used to solve complex problems such as pattern recognition, adaptive control, and global optimization. However, the EBP is basically a gradient descent method, which may get stuck in a local minimum, leading to failure in finding the globally optimal solution. Moreover, a multi-layer perceptron suffers from locking a systematic determination of the network structure appropriate for a given problem. It is usually the case to determine the number of hidden nodes by trial and error. In this paper, we propose a new algorithm to efficiently train a multi-layer perceptron. OUr algorithm uses stochastic perturbation in the weight space to effectively escape from local minima in multi-layer perceptron learning. Stochastic perturbation probabilistically re-initializes weights associated with hidden nodes to escape a local minimum if the probabilistically re-initializes weights associated with hidden nodes to escape a local minimum if the EGP learning gets stuck to it. Addition of new hidden nodes also can be viewed asa special case of stochastic perturbation. Using stochastic perturbation we can solve the local minima problem and the network structure design in a unified way. The results of our experiments with several benchmark test problems including theparity problem, the two-spirals problem, andthe credit-screening data show that our algorithm is very efficient.

  • PDF

Steady Laminar Free Convection Heat Transfer from a Sphere with Uniform Surface Heat Flux (표면의 열속이 일정한 구로 부터의 정상층류 자연대류 열전달)

  • Son Byung Jin;Lee Kwan Soo;Choi Hyung Chul;Lee Wan Ik
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.11 no.4
    • /
    • pp.1-5
    • /
    • 1982
  • In this paper, a study is made of the steady laminar free convection boundary-layer equations on a sphere with uniform surface heat flux. To solve the boundary-layer equations, well-known Pohlhausen's simiarity solution for vertical plates is adopted just the same for spherical bodies by introducing twonondimensional parametric functions, so called azimuth functions. To determine the values of the azimuth functions which are expressed in series at the two points (the upper stagnation point and the equator), trial and error method is required. It is concluded that the heat transfer results are in good agreement with obtained from perturbation method and Von Karman-Pohlhausen method within the steady laminar free convection region for Pr=0.70.

  • PDF

Mix Design of High Performance Concrete Using Maximum Density Theory (최대 밀도 이론을 이용한 고성능콘크리트의 배합 설계)

  • Lee, Seung-Han;Jung, Yong-Wook
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.377-383
    • /
    • 2007
  • In recent years the field application of high performance concrete has been increased to improve the quality and reliability of concrete structures. The mix design of the high performance concrete includes the 2 set-off mixture theory of mortar and coarse aggregate and that of paste and aggregate. The 2 set-off mixture theory of mortar and coarse aggregate has a problem of having to determine its value through repeated experiments in applying the rheological characteristics of mortar. The 2 set-off mixture theory of paste and aggregate has never been applied to high performance concrete since it doesn't take into account the relationship between optimum fine aggregate ratio and unit volume of powder nor does it consider the critical aggregate volume ratio. As the mixture theory of these high performance concretes, unlike that of general concrete, focuses on flowability and charge-ability, it does not consider intensity features in mix design also, the unit quantity of the materials used is determined by trial and error method in the same way as general concrete. This study is designed to reduce the frequency of trial and error by accurately calculating the optimum fine aggregate ratio, which makes it possible to minimize the aperture of aggregate in use by introducing the maximum density theory to the mix design of high performance concrete. Also, it is intended to propose a simple and reasonable mix design for high performance concrete meeting the requirements for both intensity and flowability. The mix design proposed in this study may reduce trial and error and conveniently produce high performance concrete which has self-chargeability by using more than the minimum unit volume of powder and optimum fine aggregate with minimum porosity.

Design of a Robust Position Tracking Controller with Sliding Mode for a 6-DOF Micropositioning Stage (6자유도 정밀 스테이지의 추종제어를 위한 슬라이딩 모드 제어기 설계)

  • Moon, Jun-Hee;Lee, Bong-Gu
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.2
    • /
    • pp.121-128
    • /
    • 2011
  • As high precision industries such as semiconductor, TFT-LCD manufacturing and MEMS continue to grow, the demand for higher DOF precision stages has been increasing. In general, the stages should accommodate a prescribed range of payloads in order to position various precision manufacturing/inspection instruments. Therefore a nonlinear controller using sliding motion is developed, which bears mass perturbation and makes the upper plate of the stage move in 6 DOF. For the application of the nonlinear control, an observer is also developed based on expected noise covariance. To eliminate the steady state error of step response, integral terms are inserted into the state-space model. The linear term of the controller is designed using optimization scheme in which parameters can be weighted according to their physical significance, whereas the nonlinear term of the controller is designed using trial and error method. A comprehensive simulation study proves that the designed controller is robust against mass perturbation and completely eliminates steady state errors.

A 20 GHz low-loss dual - mode channel filter using mode matching method (모드정합법을 이용한 20GHz 저손실 이중모드 채널여파기)

  • 정근욱;이재현;유경완;강성춘
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.10
    • /
    • pp.53-59
    • /
    • 1997
  • In this paper, we present a 20 GHz low-loss dual-mode channel filter designed by using mode matching method. The performance of dual-mode channel filter mainly depends on iris characteristics. Therefore the exact design of iris is the key point to get good frequncy response of the filter. MOde matching technique is widely used ot design several kinds of waveguide filters because it is simple in theory and can easily calculate the scattering matrices at the discontinuities with simple structure like iris coupled filters. Additionally the effect for finite thickness of the iris in the dual-mode cavity iflter is analyzed by te full-wave method, providing the exact filter implementation without trial and error.

  • PDF