• Title/Summary/Keyword: Trend of evapotranspiration

Search Result 35, Processing Time 0.034 seconds

Trend analysis of aridity index for southeast of Korea

  • Ghafouri-Azar, Mona;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.193-193
    • /
    • 2017
  • Trend analysis can enhance our knowledge of the dominant processes in the area and contribute to the analysis of future climate projections. The results of previous studies in South Korea showed that southeast regions of Korea had the highest value of evapotranspiration. Thereby, it is of interest to determine the trend analysis in hydrological variables in this area. In this study, the recent 35 year trends of precipitation, reference evapotranspiration, and aridity index in monthly and annual time scale will be analyzed over three stations (Pohang, Daegu, and Pusan) of southeast Korea. After removing the significant Lag-1 serial correlation effect by pre-whitening, non-parametric statistical Mann-Kendall test was used to detect the trends. Also, the slope of trend of the Mann-Kendall test was determined by using Theil-Sen's estimator. The results of the trend analysis of reference evapotranspiration on the annual scale showed the increasing trend for the three mentioned stations, with significant increasing trend for Pusan station. The results obtained from this research can guide development if water management practices and cropping systems in the area that rely on this weather stations. The approaches use and the models fitted in this study can serve as a demonstration of how a time series trend can be analyzed.

  • PDF

Trends of Annual and Monthly FAO Penman-Monteith Reference Evapotranspiration (연별 및 월별 FAO Penman-Monteith 기준증발산 추세 분석)

  • Rim, Chang-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1B
    • /
    • pp.65-77
    • /
    • 2008
  • The effects of climatic changes owing to urbanization, geographical and topographical conditions on annual and monthly FAO Penman-Monteith (FAO P-M) reference evapotranspiration, and energy and aerodynamic terms of FAO P-M reference evapotranspiration were studied. In this study, 21 climatological stations were selected. The statistical methods applied for trend analysis are Spearman rank test, Sen's test, linear regression analysis and analysis of actual variation ratio. Furthermore, the cluster analysis was applied to cluster 21 study stations by considering the geographical and topographical characteristics of study area. The study results indicate that urbanization affects the trend and amount of FAO P-M reference evapotranspiration, energy term and aerodynamic term; however, the result of Sen's test indicates that urbanization does not significantly affect the magnitude of trend (Sen's slope). The energy term increased at study stations located in coastal area; however, decreased at study stations located in inland area. The topographical slope of study area did not significantly influence on the trend of energy term. The aerodynamic term increased in both coastal area and inland area, indicating much significantly increasing trend in inland area, and it was also affected by the topographical slope of the study area.

Seasonal changes in pan evaporation observed in South Korea and their relationships with reference evapotranspiration

  • Woo, Yin San;Paik, Kyungrock
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.183-183
    • /
    • 2017
  • Pan evaporation (Epan) is an important indicator of water and energy balance. Despite global warming, decreasing annual Epan has been reported across different continents over last decades, which is claimed as pan evaporation paradox. However, such trend is not necessarily found in seasonal data because the level of contributions on Epan vary among meteorological components. This study investigates long-term trend in seasonal pan evaporation from 1908 to 2016 across South Korea. Meteorological variables including air temperature (Tair), wind speed (U), vapor pressure deficit (VPD), and solar radiation (Rs) are selected to quantify the effects of individual contributing factor to Epan. We found overall decreasing trend in Epan, which agrees with earlier studies. However, mixed tendencies between seasons due to variation of dominant factor contributing Epan were found. We also evaluated the reference evapotranspiration based on Penman-Monteith method and compared this with Epan to better understand the physics behind the evaporation paradox.

  • PDF

Assessing the Climate Change Impacts on Paddy Rice Evapotranspiration Considering Uncertainty (불확실성을 고려한 논벼 증발산량 기후변화 영향 평가)

  • Choi, Soon-Kun;Jeong, Jaehak;Cho, Jaepil;Hur, Seung-Oh;Choi, Dongho;Kim, Min-Kyeong
    • Journal of Climate Change Research
    • /
    • v.9 no.2
    • /
    • pp.143-156
    • /
    • 2018
  • Evapotranspiration is a key element in designing and operating agricultural hydraulic structures. The profound effect of climate change to local agro-hydrological systems makes it inevitable to study the potential variability in evapotranspiration rate in order to develop policies on future agricultural water management as well as to evaluate changes in agricultural environment. The APEX-Paddy model was used to simulate local evapotranspiration responses to climate change scenarios. Nine Global Climate Models(GCMs) downscaled using a non-parametric quantile mapping method and a Multi?Model Ensemble method(MME) were used for an uncertainty analysis in the climate scenarios. Results indicate that APEX-Paddy and the downscaled 9 GCMs reproduce evapotranspiration accurately for historical period(1976~2005). For future periods, simulated evapotranspiration rate under the RCP 4.5 scenario showed increasing trends by -1.31%, 2.21% and 4.32% for 2025s(2011~2040), 2055s(2041~2070) and 2085s(2071~2100), respectively, compared with historical(441.6 mm). Similar trends were found under the RCP 8.5 scenario with the rates of increase by 0.00%, 4.67%, and 7.41% for the near?term, mid?term, and long?term periods. Monthly evapotranspiration was predicted to be the highest in August, July was the month having a strong upward trend while. September and October were the months showing downward trends in evapotranspiration are mainly resulted from the shortening of the growth period of paddy rice due to temperature increase and stomatal closer as ambient $CO_2$ concentration increases in the future.

Evaluation of impact of climate variability on water resources and yield capacity of selected reservoirs in the north central Nigeria

  • Salami, Adebayo Wahab;Ibrahim, Habibat;Sojobi, Adebayo Olatunbosun
    • Environmental Engineering Research
    • /
    • v.20 no.3
    • /
    • pp.290-297
    • /
    • 2015
  • This paper presents the evaluation of the impact of climate change on water resources and yield capacity of Asa and Kampe reservoirs. Trend analysis of mean temperature, runoff, rainfall and evapotranspiration was carried out using Mann Kendall and Sen's slope, while runoff was modeled as a function of temperature, rainfall and evapotranspiration using Artificial Neural Networks (ANN). Rainfall and runoff exhibited positive trends at the two dam sites and their upstream while forecasted ten-year runoff displayed increasing positive trend which indicates high reservoir inflow. The reservoir yield capacity estimated with the ANN forecasted runoff was higher by about 38% and 17% compared to that obtained with historical runoff at Asa and Kampe respectively. This is an indication that there is tendency for water resources of the reservoir to increase and thus more water will be available for water supply and irrigation to ensure food security.

A Study on Variation in Annual Water Balance (도시화에 따른 수문기후변화 I (연 물수지 변화 분석))

  • Rim, Chang-Soo;Chae, Hyo-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.7
    • /
    • pp.555-570
    • /
    • 2007
  • The effects of climatic changes owing to urbanization on annual water balance have been studied. In this study, 56 meteorological stations including Seoul metropolis in South Korea have been selected, and the area of study site is $314\;km^2$. The meteorological station is centrally located in the study area with a 10 km radius. Land use status of study area was examined to estimate the urbanization extent, so that annual actual evapotranspiration could be estimated. Annual runoff was estimated by annual water balance approach using the estimated annual actual evapotranspiration and measured annual precipitation. Annual actual evapotranspiration was estimated by applying experimental equation suggested by Zhang et al, (2001) which was evaluated from 250 watersheds all over the world. Study results show that reference evapotranspiration is tending upwards due to urbanization; therefore, it seems that climatic change due to urbanization may increase the amount of annual actual evapotranspiration. However, the increase of residential area due to urbanization in study area may decrease the amount of annual actual evapotranspiration. The study results indicate that urbanization effect on annual trend of precipitation was not significant. In urban area, annual runoff is directly affected by annual precipitation, and compared with annual precipitation, annual variation of actual evapotranspiration was not significant even though it was estimated by using annual precipitation. It seems that the effect of urbanization on annual actual evapotranspiration does not influence on annual runoff significantly, and that urbanization effect on annual runoff Is not significant.

Analysis of Drought Risk in the Upper River Basins based on Trend Analysis Results (갈수기 경향성 분석을 활용한 상류 유역의 가뭄위험 변동성 분석)

  • Jung, Il Won;Kim, Dong Yeong;Park, Jiyeon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.1
    • /
    • pp.21-29
    • /
    • 2019
  • This study analyzed the variability of drought risk based on trend analysis of dry-seasonal dam inflow located in upper river basins. To this, we used areal averaged precipitation and dam inflow of three upper river dams such as Soyang dam, Chungju dam, and Andong dam. We employed Mann-Kendall trend analysis and change point detection method to identify the significant trends and changing point in time series. Our results showed that significant decreasing trends (95% confidence interval) in dry-seasonal runoff rates (= dam inflow/precipitation) in three-dam basins. We investigated potential causes of decreasing runoff rates trends using changes in potential evapotranspiration (PET) and precipitation indices. However, there were no clear relation among changes in runoff rates, PET, and precipitation indices. Runoff rate reduction in the three dams may increase the risk of dam operational management and long-term water resource planning. Therefore, it will be necessary to perform a multilateral analysis to better understand decreasing runoff rates.

Analysis for the Regional Characteristic of Climatic Aridity Condition in May (5월 기후 건조현상의 지역별 특성 분석)

  • Rim, Chang-Soo;Kim, Seong-Yeop
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.6
    • /
    • pp.613-627
    • /
    • 2013
  • In this study, to understand the May aridity condition of each region for the year of the worst drought on record in each duration (1-, 3-, 6-, 12-, 24 months), monthly climate data recorded from 1973 to 2006 at 53 climatological stations in South Korea were used to estimate the FAO Penman-Monteith reference potential evapotranspiration (RET). Monthly precipitation and RET were used to estimate P/RET as aridity index and variation index (VI) of P/RET, and these indexes are compared with SPI (Standard Precipitation Index). Fifty three climatological stations were grouped into 20 regions, so that May aridity conditions of 20 regions were studied. Furthermore, regional trend of May aridity index was studied by applying Mann-Kendall trend analysis, Spearman rank test, and Sen's slope estimator. The study results show that variation index (VI) of P/RET and SPI have close correlation. Throughout the country, as the duration is shorter, May aridity was more severe. In case of 3-month and 6-month duration, most of region show significant or non-significant decreasing trend of aridity index. However, no region show significant decreasing trend of aridity index in case of 12-month and 24-month duration.

Studies on Relations between Various Coeffcients of Evapo-Transpiration and Quantities of Dry Matters for Tall-and Short Statured Varieties of Paddy Rice (논벼 장.단간품종의 증발산제계수와 건물량과의 관계에 대한 연구(I))

  • 류한열;김철기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.16 no.2
    • /
    • pp.3361-3394
    • /
    • 1974
  • The purpose of this thesis is to disclose some characteristics of water consumption in relation to the quantities of dry matters through the growing period for two statured varieties of paddy rice which are a tall statured variety and a short one, including the water consumption during seedling period, and to find out the various coefficients of evapotranspiration that are applicable for the water use of an expected yield of the two varieties. PAL-TAL, a tall statured variety, and TONG-lL, a short statured variety were chosen for this investigation. Experiments were performed in two consecutive periods, a seedling period and a paddy field period, In the investigation of seedling period, rectangular galvanized iron evapotranspirometers (91cm${\times}$85cm${\times}$65cm) were set up in a way of two levels (PAL-TAL and TONG-lL varieties) with two replications. A standard fertilization method was applied to all plots. In the experiment of paddy field period, evapotanspiration and evaporation were measured separately. For PAL-TAL variety, the evapotranspiration measurements of 43 plots of rectangular galvanized iron evapotranspirometer (91cm${\times}$85cm${\times}$65cm) and the evaporation measurements of 25 plots of rectangular galvanized iron evaporimeter (91cm${\times}$85cm${\times}$15cm) have been taken for seven years (1966 through 1972), and for TONG-IL variety, the evapotranspiration measurements of 19 plots and the evaporation measurements of 12 plots have been collected for two years (1971 through 1972) with five different fertilization levels. The results obtained from this investigation are summarized as follows: 1. Seedling period 1) The pan evaporation and evapotranspiration during seedling period were proved to have a highly significant correlation to solar radiation, sun shine hours and relative humidity. But they had no significant correlation to average temperature, wind velocity and atmospheric pressure, and were appeared to be negatively correlative to average temperature and wind velocity, and positively correlative to the atmospheric pressure, in a certain period. There was the highest significant correlation between the evapotranspiration and the pan evaporation, beyond all other meteorological factors considered. 2) The evapotranpiration and its coefficient for PAL-TAL variety were 194.5mm and 0.94∼1.21(1.05 in average) respectively, while those for TONG-lL variety were 182.8mm and 0.90∼1.10(0.99 in average) respectively. This indicates that the evapotranspiration for TONG-IL variety was 6.2% less than that for PAL-TAL variety during a seedling period. 3) The evapotranspiration ratio (the ratio of the evapotranspiration to the weight of dry matters) during the seedling period was 599 in average for PAL-TAL variety and 643 for TONG-IL variety. Therefore the ratio for TONG-IL was larger by 44 than that for PAL-TAL variety. 4) The K-values of Blaney and Criddle formula for PAL-TAL variety were 0.78∼1.06 (0.92 in average) and for TONG-lL variety 0.75∼0.97 (0.86 in average). 5) The evapotranspiration coefficient and the K-value of B1aney and Criddle formular for both PAL-TAL and TONG-lL varieties showed a tendency to be increasing, but the evapotranspiration ratio decreasing, with the increase in the weight of dry matters. 2. Paddy field period 1) Correlation between the pan evaporation and the meteorological factors and that between the evapotranspiration and the meteorological factors during paddy field period were almost same as that in case of the seedling period (Ref. to table IV-4 and table IV-5). 2) The plant height, in the same level of the weight of dry matters, for PAL-TAL variety was much larger than that for TONG-IL variety, and also the number of tillers per hill for PAL-TAL variety showed a trend to be larger than that for TONG-IL variety from about 40 days after transplanting. 3) Although there was a tendency that peak of leaf-area-index for TONG-IL variety was a little retarded than that for PAL-TAL variety, it appeared about 60∼80 days after transplanting. The peaks of the evapotranspiration coefficient and the weight of dry matters at each growth stage were overlapped at about the same time and especially in the later stage of growth, the leaf-area-index, the evapotranspiration coefficient and the weight of dry matters for TONG-IL variety showed a tendency to be larger then those for PAL-TAL variety. 4) The evaporation coefficient at each growth stage for TONG-IL and PAL-TALvarieties was decreased and increased with the increase and decrease in the leaf-area-index, and the evaporation coefficient of TONG-IL variety had a little larger value than that of PAL-TAL variety. 5) Meteorological factors (especially pan evaporation) had a considerable influence to the evapotranspiration, the evaporation and the transpiration. Under the same meteorological conditions, the evapotranspiration (ET) showed a increasing logarithmic function of the weight of dry matters (x), while the evaporation (EV) a decreasing logarithmic function of the weight of dry matters; 800kg/10a x 2000kg/10a, ET=al+bl logl0x (bl>0) EV=a2+b2 log10x (a2>0 b2<0) At the base of the weight of total dry matters, the evapotranspiration and the evaporation for TONG-IL variety were larger as much as 0.3∼2.5% and 7.5∼8.3% respectively than those of PAL-TAL variety, while the transpiration for PAL-TAL variety was larger as much as 1.9∼2.4% than that for TONG-IL variety on the contrary. At the base of the weight of rough rices the evapotranspiration and the transpiration for TONG-IL variety were less as much as 3.5% and 8.l∼16.9% respectively than those for PAL-TAL variety and the evaporation for TONG-IL was much larger by 11.6∼14.8% than that for PAL-TAL variety. 6) The evapotranspiration coefficient, the evaporation coefficient and the transpiration coefficient and the transpiration coefficient were affected by the weight of dry matters much more than by the meteorological conditions. The evapotranspiratioa coefficient (ETC) and the evaporation coefficient (EVC) can be related to the weight of dry matters (x) by the following equations: 800kg/10a x 2000kg/10a, ETC=a3+b3 logl0x (b3>0) EVC=a4+b4 log10x (a4>0, b4>0) At the base of the weights of dry matters, 800kg/10a∼2000kg/10a, the evapotranspiration coefficients for TONG-IL variety were 0.968∼1.474 and those for PAL-TAL variety, 0.939∼1.470, the evaporation coefficients for TONG-IL variety were 0.504∼0.331 and those for PAL-TAL variety, 0.469∼0.308, and the transpiration coefficients for TONG-IL variety were 0.464∼1.143 and those for PAL-TAL variety, 0.470∼1.162. 7) The evapotranspiration ratio, the evaporation ratio (the ratio of the evaporation to the weight of dry matters) and the transpiration ratio were highly affected by the meteorological conditions. And under the same meteorological condition, both the evapotranspiration ratio (ETR) and the evaporation ratio (EVR) showed to be a decreasing logarithmic function of the weight of dry matters (x) as follows: 800kg/10a x 2000kg/10a, ETR=a5+b5 logl0x (a5>0, b5<0) EVR=a6+b6 log10x (a6>0 b6<0) In comparison between TONG-IL and PAL-TAL varieties, at the base of the pan evaporation of 343mm and the weight of dry matters of 800∼2000kg/10a, the evapotranspiration ratios for TONG-IL variety were 413∼247, while those for PAL-TAL variety, 404∼250, the evaporation ratios for TONG-IL variety were 197∼38 while those for PAL-TAL variety, 182∼34, and the transpiration ratios for TONG-IL variety were 216∼209 while those for PAL-TAL variety, 222∼216 (Ref. to table IV-23, table IV-25 and table IV-26) 8) The accumulative values of evapotranspiration intensity and transpiration intensity for both PAL-TAL and TONG-IL varieties were almost constant in every climatic year without the affection of the weight of dry matters. Furthermore the evapotranspiration intensity appeared to have more stable at each growth stage. The peaks of the evapotranspiration intensity and transpiration intensity, for both TONG-IL and PAL-TAL varieties, appeared about 60∼70 days after transplanting, and the peak value of the former was 128.8${\pm}$0.7, for TONG-IL variety while that for PAL-TAL variety, 122.8${\pm}$0.3, and the peak value of the latter was 152.2${\pm}$1.0 for TONG-IL variety while that for PAL-TAL variety, 152.7${\pm}$1.9 (Ref.to table IV-27 and table IV-28) 9) The K-value in Blaney & Criddle formula was changed considerably by the meteorological condition (pan evaporation) and related to be a increasing logarithmic function of the weight of dry matters (x) for both PAL-TAL and TONG-L varieties as follows; 800kg/10a x 2000kg/10a, K=a7+b7 logl0x (b7>0) The K-value for TONG-IL variety was a little larger than that for PAL-TAL variety. 10) The peak values of the evapotranspiration coefficient and k-value at each growth stage for both TONG-IL and PAL-TAL varieties showed up about 60∼70 days after transplanting. The peak values of the former at the base of the weights of total dry matters, 800∼2000kg/10a, were 1.14∼1.82 for TONG-IL variety and 1.12∼1.80, for PAL-TAL variety, and at the base of the weights of rough rices, 400∼1000 kg/10a, were 1.11∼1.79 for TONG-IL variety and 1.17∼1.85 for PAL-TAL variety. The peak values of the latter, at the base of the weights of total dry matters, 800∼2000kg/10a, were 0.83∼1.39 for TONG-IL variety and 0.86∼1.36 for PAL-TAL variety and at the base of the weights of rough rices, 400∼1000kg/10a, 0.85∼1.38 for TONG-IL variety and 0.87∼1.40 for PAL-TAL variety (Ref. to table IV-18 and table IV-32) 11) The reasonable and practicable methods that are applicable for calculating the evapotranspiration of paddy rice in our country are to be followed the following priority a) Using the evapotranspiration coefficients based on an expected yield (Ref. to table IV-13 and table IV-18 or Fig. IV-13). b) Making use of the combination method of seasonal evapotranspiration coefficient and evapotranspiration intensity (Ref. to table IV-13 and table IV-27) c) Adopting the combination method of evapotranspiration ratio and evapotranspiration intensity, under the conditions of paddy field having a higher level of expected yield (Ref. to table IV-23 and table IV-27). d) Applying the k-values calculated by Blaney-Criddle formula. only within the limits of the drought year having the pan evaporation of about 450mm during paddy field period as the design year (Ref. to table IV-32 or Fig. IV-22).

  • PDF

Use of various drought indices to analysis drought characteristics under climate change in the Doam watershed

  • Sayed Shajahan Sadiqi;Eun-Mi Hong;Won-Ho Nam
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.178-178
    • /
    • 2023
  • Drought and flooding have historically coexisted in Korea, occurring at different times and with varying cycles and trends. The drought indicators measured were (PDSI), (SPI), and (SPEI) in order to statistically analyze the annual or periodic drought occurrence and objectively evaluate statistical characteristics such as the periodicity, tendency, and frequency of occurrence of droughts in the Doam watershed. To compute potential evapotranspiration (PET), both Thornthwaite (Thor) and Penman-Monteith (PM) parameterizations were considered, and the differences between the two PET estimators were analyzed. Hence, SPIs 3 and SPIs 6 revealed a tendency to worsen drought in the spring and winter and a tendency to alleviate drought in the summer in the study area. The seasonal variability trend did not occur in the SPIs 12 and PDSI, as it did in the drought index over a short period. As a result of the drought trend study, the drought from winter to spring gets more severe, in addition to the duration of the drought, although the periodicity of the recurrence of the drought ranged from 3 years to 6 years at the longest, indicating that SPIs 3 showed a brief time of around 1 year. SPIs 6 and SPIs 12 had a term of 4 to 6 years, and PDSI had a period of roughly 6 years. Based on the indicators of the PDSI, SPI, and SPEI, the drought severity increases under climate change conditions with the decrease in precipitation and increased water demand as a consequence of the temperature increase. Therefore, our findings show that national and practical measures are needed for both winter and spring droughts, which happen every year, as well as large-scale and extreme droughts, which happen every six years.

  • PDF