• Title/Summary/Keyword: Trench angle

Search Result 26, Processing Time 0.029 seconds

Horizontal Earth Pressure of the Backfill in the Narrowly Excavated Ground Considering Various Boundary Conditions (좁게 굴착된 뒤채움 지반의 경계조건에 따른 수평응력 변화에 관한 연구)

  • Kim, Hee Su;Ban, Hoki;Moon, Chang-Yeul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.11
    • /
    • pp.19-26
    • /
    • 2017
  • When narrowly excavated in the urban area, the wall of backfill space is not only symmetrical but also asymmetrical. In this case, the horizontal stress induced by backfilling depends mostly on the wall asymmetry and the wall friction angle. Therefore, in this study, the model test in the laboratory was conducted to investigate horizontal earth pressure with depth considering various boundary conditions such as base width, wall friction, relative density of backfill, and wall angle. As the wall is smoother and wall angle is lower from the bottom, the results showed higher the horizontal stresses due to the increase of vertical stresses.

Formation of Passivation Layer and Its Effect on the Defect Generation during Trench Etching (트렌티 식각시 식각 방지막의 형성과 이들이 결함 생성에 미치는 영향)

  • Lee, Ju-Wook;Kim, Sang-Gi;Kim, Jong-Dae;Koo, Jin-Gon;Lee, Jeong-Yong;Nam, Kee-Soo
    • Korean Journal of Materials Research
    • /
    • v.8 no.7
    • /
    • pp.634-640
    • /
    • 1998
  • A well- shaped trench was investigated in view of the defect distribution along trench sidewall and bottom using high resolution transmission electron microscopy. The trench was formed by HBr plasma and additive gases in magnetically enhanced reactive ion etching system. Adding $0_2$ and other additive gases into HBr plasma makes it possible to eliminate sidewall undercut and lower surface roughness by forming the passivation layer of lateral etching, resulted in the well filled trench with oxide and polysilicon by subsequent deposition. The passivation layer of lateral etching was mainly composed of $SiO_xF_y$ $SiO_xBr_y$ confirmed by chemical analysis. It also affects the generation and distribution of lattice defects. Most of etch induced defects were found in the edge region of the trench bottom within the depth of 10$\AA$. They are generally decreased with the thickness of residue layer and almost disappeared below the uni¬formly thick residue layer. While the formation of crystalline defects in silicon substrate mainly depends on the incident angle and energy of etch species, the region of surface defects on the thickness of residue layer formed during trench etching.

  • PDF

Wave Screening Effectiveness of Infilled Trenches (방진벽의 표면가 산란효과)

  • 이종세
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.152-159
    • /
    • 1997
  • An analytical method is developed to study the propagation of surface waves across infilled trenches. The Green's function technique is used to estimate the reflection and transmission coefficients of Rayleigh waves across a semi-infinite plate inserted between two homogeneous quarter-spaces. After validating the method against experimental data, influence of the material contrast and the angle of incidence on the screening effectiveness of an infilled trench is examined.

  • PDF

The Three -Dimensional Stability Analysis of the Diaphragm Wall under the Influence of External Loads (상재하중의 영향을 고려한 Diaphragm Wall의 3차원 안정도 해석)

  • Gu, Ja-Gap;Lee, Sang-Deok;Jeon, Mong-Gak
    • Geotechnical Engineering
    • /
    • v.7 no.3
    • /
    • pp.43-50
    • /
    • 1991
  • To analyze the effects of ground water levels and external loads on the stability of a Dia- phragm wall, the three models of Bell, Piaskowski/kowalewski, and Washbourne were modified and extended to develop a new program SL3D. Comparing to the other two models, Washbourne's model shows the stability in on safes at the beginning of the excavation and increase as the excavation continue . Also the effects of various design factors, such as the density of slurry, ground water levels, the friction angle of soil, external loads and the length of trench, have been analyzed and a nomogram was developed.

  • PDF

Refilled mask structure for Minimizing Shadowing Effect on EUV Lithography

  • Ahn, Jin-Ho;Shin, Hyun-Duck;Jeong, Chang-Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.4
    • /
    • pp.13-18
    • /
    • 2010
  • Extreme ultraviolet (EUV) lithography using 13.5 nm wavelengths is expected to be adopted as a mass production technology for 32 nm half pitch and below. One of the new issues introduced by EUV lithography is the shadowing effect. Mask shadowing is a unique phenomenon caused by using mirror-based mask with an oblique incident angle of light. This results in a horizontal-vertical (H-V) biasing effect and ellipticity in the contact hole pattern. To minimize the shadowing effect, a refilled mask is an available option. The concept of refilled mask structure can be implemented by partial etching into the multilayer and then refilling the trench with an absorber material. The simulations were carried out to confirm the possibility of application of refilled mask in 32 nm line-and-space pattern under the condition of preproduction tool. The effect of sidewall angle in refilled mask is evaluated on image contrast and critical dimension (CD) on the wafer. We also simulated the effect of refilled absorber thickness on aerial image, H-V CD bias, and overlapping process window. Finally, we concluded that the refilled absorber thickness for minimizing shadowing effect should be thinner than etched depth.

Friction behavior of controlled low strength material-soil interface

  • Han, WooJin;Kim, Sang Yeob;Lee, Jong-Sub;Byun, Yong-Hoon
    • Geomechanics and Engineering
    • /
    • v.18 no.4
    • /
    • pp.407-415
    • /
    • 2019
  • A controlled low strength material (CLSM) is a highly flowable cementitious material used for trench backfilling. However, when applying vertical loads to backfilled trenches, shear failure or differential settlement may occur at the interface between the CLSM and natural soil. Hence, this study aims to evaluate the characteristics of the interface friction between the CLSM and soils based on curing time, gradation, and normal stress. The CLSM is composed of fly ash, calcium sulfoaluminate cement, sand, silt, water, and an accelerator. To investigate the engineering properties of the CLSM, flow and unconfined compressive strength tests are carried out. Poorly graded and well-graded sands are selected as the in-situ soil adjacent to the CLSM. The direct shear tests of the CLSM and soils are carried out under three normal stresses for four different curing times. The test results show that the shear strengths obtained within 1 day are higher than those obtained after 1 day. As the curing time increases, the maximum dilation of the poorly graded sand-CLSM specimens under lower normal stresses also generally increases. The maximum contraction increases with increasing normal stress, but it decreases with increasing curing time. The shear strengths of the well-graded sand-CLSM interface are greater than those of the poorly graded sand-CLSM interface. Moreover, the friction angle for the CLSM-soil interface decreases with increasing curing time, and the friction angles of the well-graded sand-CLSM interface are greater than those of the poorly graded sand-CLSM interface. The results suggest that the CLSM may be effectively used for trench backfilling owing to a better understanding of the interface shear strength and behavior between the CLSM and soils.

Experimental Study on Micro PIV Measurement using a Micro Liquid Lens (마이크로 유체렌즈를 이용한 마이크로 PIV 측정에 관한 실험적 연구)

  • Jeong, S.R.;Dang, T.D.;Choi, J.H.;Kim, G.M.;Park, C.W.
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.3
    • /
    • pp.22-28
    • /
    • 2010
  • In the present study, we performed the velocity field measurement in a microchannel using a focal length variable micro liquid lens. The liquid lens is used as a beam expander in a micro-PIV system to acquire the scatter image of the seeded particle. A thin film-type micro liquid lens was made of PDMS material and it was attached on top of the 700-micron-wide working fluid supply channel trench. As a result, the focal length and contact angle of the liquid lens changed with variations in applied pressure.

Feature Scale Simulation of Selective Chemical Vapor Deposition Process

  • Yun, Jong-Ho
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S1
    • /
    • pp.190-195
    • /
    • 1995
  • The feature scale model for selective chemical vapor deopsition process was proposed and the simulation was performed to study the selectivity and uniformity of deposited thin film using Monte Carlo method and string algorithm. The effect of model parameters such as sticking coefficient, aspect ratio, and surface diffusion coefficient on the deposited thin film pattern was improved for lower sticking coefficient and higher aspect ratio. It was revealed that the selectivity loss ascrives to the surface diffusion. Different values of sticking coefficients on Si and on SiO2 surface greatly influenced the deopsited thin film profile. In addition, as the lateral wall angle decreased, the selectively deposited film had improved uniformity except the vicinity of trench wall. The optimum eondition for the most flat selective film deposition pattern is the case with low sticking coefficient and slightly increased surface diffusion coefficient.

  • PDF

Unified Model for Alpha-particle-induced Charge Collection (알파 입자에 의한 전하 수집량에 대한 통합 모델)

  • Shin, Hyung-Soon
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.1
    • /
    • pp.83-89
    • /
    • 1999
  • A Unified model for the alpha-particle-induced charge collection has been developed. By accounting for funneling and diffusion charges separately, new model accurately describes the dependence of collected charge on junction size, junction bias, injection energy, injection angle, injection point, and trench oxide depth.

  • PDF

Developing of Super Junction MOSFET According to Charge Imbalance Effect (전하 불균형 효과를 고려한 Super Junction MOSFET 개발에 관한 연구)

  • Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.10
    • /
    • pp.613-617
    • /
    • 2014
  • This paper was analyzed electrical characteristics of super junction power MOSFET considering to charge imbalance. We extracted optimal design and process parameter at -15% of charge imbalance. Considering extracted design and process parameters, we fabricated super junction MOSFET and analyzed electrical characteristics. We obtained 600~650 V breakdown voltage, $224{\sim}240m{\Omega}$ on resistance. This paper was showed superior on resistance of super junction MOSFET. We can use for automobile industry.