• Title/Summary/Keyword: Tree Routing

Search Result 284, Processing Time 0.025 seconds

A New Low-Skew Clock Network Design Method (새로운 낮은 스큐의 클락 분배망 설계 방법)

  • 이성철;신현철
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.5
    • /
    • pp.43-50
    • /
    • 2004
  • The clock skew is one of the major constraints for high-speed operation of synchronous integrated circuits. In this paper, we propose a hierarchical partitioning based clock network design algorithm called Advanced Clock Tree Generation (ACTG). Especially new effective partitioning and refinement techniques have been developed in which the capacitance and edge length to each sink are considered from the early stage of clock design. Hierarchical structures obtained by parhtioning and refinement are utilized for balanced clock routing. We use zero skew routing in which Elmore delay model is used to estimate the delay. An overlap avoidance routing algorithm for clock tree generation is proposed. Experimental results show significant improvement over conventional methods.

Security Model for Tree-based Routing in Wireless Sensor Networks: Structure and Evaluation

  • Almomani, Iman;Saadeh, Maha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.4
    • /
    • pp.1223-1247
    • /
    • 2012
  • The need for securing Wireless Sensor Networks (WSNs) is essential especially in mission critical fields such as military and medical applications. Security techniques that are used to secure any network depend on the security requirements that should be achieved to protect the network from different types of attacks. Furthermore, the characteristics of wireless networks should be taken into consideration when applying security techniques to these networks. In this paper, energy efficient Security Model for Tree-based Routing protocols (SMTR) is proposed. In SMTR, different attacks that could face any tree-based routing protocol in WSNs are studied to design a security reference model that achieves authentication and data integrity using either Message Authentication Code (MAC) or Digital Signature (DS) techniques. The SMTR communication and processing costs are mathematically analyzed. Moreover, SMTR evaluation is performed by firstly, evaluating several MAC and DS techniques by applying them to tree-based routing protocol and assess their efficiency in terms of their power requirements. Secondly, the results of this assessment are utilized to evaluate SMTR phases in terms of energy saving, packet delivery success ratio and network life time.

Enhancing the Quality of Service by GBSO Splay Tree Routing Framework in Wireless Sensor Network

  • Majidha Fathima K. M.;M. Suganthi;N. Santhiyakumari
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.2188-2208
    • /
    • 2023
  • Quality of Service (QoS) is a critical feature of Wireless Sensor Networks (WSNs) with routing algorithms. Data packets are moved between cluster heads with QoS using a number of energy-efficient routing techniques. However, sustaining high scalability while increasing the life of a WSN's networks scenario remains a challenging task. Thus, this research aims to develop an energy-balancing component that ensures equal energy consumption for all network sensors while offering flexible routing without congestion, even at peak hours. This research work proposes a Gravitational Blackhole Search Optimised splay tree routing framework. Based on the splay tree topology, the routing procedure is carried out by the suggested method using three distinct steps. Initially, the proposed GBSO decides the optimal route at initiation phases by choosing the root node with optimum energy in the splay tree. In the selection stage, the steps for energy update and trust update are completed by evaluating a novel reliance function utilising the Parent Reliance (PR) and Grand Parent Reliance (GPR). Finally, in the routing phase, using the fitness measure and the minimal distance, the GBSO algorithm determines the best route for data broadcast. The model results demonstrated the efficacy of the suggested technique with 99.52% packet delivery ratio, a minimum delay of 0.19 s, and a network lifetime of 1750 rounds with 200 nodes. Also, the comparative analysis ensured that the suggested algorithm surpasses the effectiveness of the existing algorithm in all aspects and guaranteed end-to-end delivery of packets.

Internet Multicast Routing Protocol Supporting Method over MPLS Networks (MPLS망에서의 인터넷 멀티캐스트 라우팅 프로토콜 지원 방안)

  • 김영준;박용진
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.37 no.3
    • /
    • pp.93-103
    • /
    • 2000
  • This paper describes Internet multicast routing protocols over MPLS (Multiprotocol Label Switching) networks. Internet multicast routing protocols are divided into 3 categories in terms of tree types and tree characteristics: a shortest path tree, a shared tree and hybrid tree types. MPLS should support various multicast mechanisms because of extremely different IP multicast architectures, such as uni-/bi-directional link, Flooding/prune tree maintenance mechanism, the existence of different tree types with the same group, etc. There are so many problems over MPLS multicast that the solutions can't be easily figured out. In this paper, we make a few assumptions on which the solutions of IP multicast routing protocols over MPLS networks are given. A broadcasting label is defined for the shortest path tree types. Cell interleaving problems of the shared tree types is solved by using block-based transmission mechanism. Finally, the existing hybrid-type multicast routing protocol is reasonably modified to support MPLS multicast.

  • PDF

Layer 2 Routing with Multi-Spanning Tree Per a Node (노드 당 다중 스패닝 트리를 이용한 2계층 라우팅)

  • Suh, Chang-Jin;Shin, Ji-Soo;Kim, Kyung-Mi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.9B
    • /
    • pp.751-759
    • /
    • 2008
  • Carrier Ethernet backbone network integrates distributed layer-2 based metro networks. In this networks, Multiple Spanning Tree Protocol (MSTP) has been uscd as a main routing protocol that allows multiple spanning trees in a network. A better routing protocol called IEEE802.1aq - Shortest Path Bridging (SPB) is recently proposed, that generates the shortest spanning tree per a destination node. As SPB provides a routing path per a destination node, there is no way to adapt network traffic at normal condition. If we are free from the principle of "a spanning tree per a destination node", we can achieve adaptive routing. Based on this philosophy, we propose a new spanning tree based protocol - Edge Node Divided Spanning Tree (ENDIST). ENDIST divides an edge node into sub-nodes as many as connecting links from the node and each sub-node generates a single shortest path tree based on SPB. Depending on network or nodal status, ENDIST chooses a better routing path by flow-basis. This added traffic engineering ability contributes to enhanced throughput and reduced delay in backbone networks. The simulation informs us that ENDIST's throughput under heavy load performs about 3.4-5.8 and 1.5-2.0 times compared with STP's and SPB's one respectively. Also, we verified that ENDIST's throughput corresponds to the theoretical upper bound at half of cases we investigated. This means that the proposed ENDIST is a dramatically enhanced and the close-to-perfect spanning tree based routing schemes.

A Tree-Based Approach for the Internet Connectivity of Mobile Ad Hoc Networks

  • Oh, Ro-An
    • Journal of Communications and Networks
    • /
    • v.11 no.3
    • /
    • pp.261-270
    • /
    • 2009
  • We propose a tree-based integration of infrastructure networks and MANETs (TUM) to efficiently extend the scope of mobile Internet protocol to mobile ad hoc networks and devise a tree-based routing protocol (TBRP) that is suitable for the TUM architecture. Infrastructure networks have a number of fixed Internet Gateways that connect two heterogeneous networks. Mobile nodes form a number of small trees named pMANETs, each of them growing from anchor node which can communicate directly with an Internet Gateway. A new node registers with foreign agent and home agent along the tree path without resorting to an inefficient flooding. Furthermore, the TBRP sets up a routing path efficiently by exploiting the tree information without relying on flooding. We show by resorting to simulation that our approach is competitive against the conventional AODV based approach.

A Time Synchronization Protocol of Sensor Nodes Combining Flooding-Routing Protocol with Bidirectional LTS (플러딩 라우팅 프로토콜과 양방향 LTS를 결합한 센서 노드의 시간 동기화 기법)

  • Shin, Jae-Hyuck;Oh, Hyun-Su;Jeon, Joong-Nam
    • The KIPS Transactions:PartC
    • /
    • v.18C no.2
    • /
    • pp.119-126
    • /
    • 2011
  • In wireless sensor networks Time synchronization used to be performed after routing tree is constructed. It results in increasing the number of packets and energy consumption. In this paper, we propose a time synchronization algorithm combined with flooding routing tree construction algorithm, which applies LTS (Lightweight Time Synchronization) information packed into the forwarding and backward routing packets. Furthermore, the proposed algorithm compensates the time error due to clock drift using the round time with fixed period. We prove that the proposed algorithm could synchronize the time of among sensor nodes more accurately compared to TSRA (Time Synchronization Routing Algorithm) using NS2 simulation tool.

A Rendezvous Router Decision Algorithm Considering Routing Table Size (라우팅 테이블의 크기를 고려한 랑데부 라우터 선정 알고리즘)

  • Cho, Kee-Seong;Jang, Hee-Seon;Kim, Dong-Whee
    • The KIPS Transactions:PartC
    • /
    • v.13C no.7 s.110
    • /
    • pp.905-912
    • /
    • 2006
  • Depending on the location of the rendezvous point (RP), the network efficiency is determined in the core based tree (CBT) or protocol independent multicast-sparse mode (PIM-5M) multicasting protocol to provide the multicast services based on the shared tree. In this paper, a new algorithm to allocate the RP using the estimated values of the total cost and the size(number of entries) of the routing tables is proposed for efficiently controlling the cost and the number of routing table entries. The numerical results show that the proposed algorithm reduces the total cost in 5.37%, and the size of routing tables in 13.35% as compared to the previous algorithm.

A Method of Selecting Core for the Shared-Tree based Multicast Routing (공유 트리 기반 멀티캐스트 라우팅을 위한 코어 선택 방법)

  • Hwang, Soon-Hwan;Youn, Sung-Dae
    • The KIPS Transactions:PartC
    • /
    • v.10C no.7
    • /
    • pp.885-890
    • /
    • 2003
  • The Core Base Tree (CBT) multicast routing architecture is a multicast routing protocol for the internet. The CBT establishes a single shared tree for a multicast connection. The shared tree Is rooted at a center node called core. The location of the core may affect the cost and performance of the CBT. The core placement method requires the knowledge of the network topology In this Paper, we propose a simple and effective method for selecting the core. This method requires the distance vector information. in addition, we used results that calculated sample correlation coefficient. And then we select suitable routing algorithm according to member's arrangement states in muliticast group. we select core node that have minimum average cost or PIM-SM protocol is selected. The performance of this method is compared with several other methods by extensive simulations (i.e mean delay, maximum delay, and total cost). Our results shows that this method for Selecting Core is very effective.

An Efficient Algorithm for Dynamic Shortest Path Tree Update in Network Routing

  • Xiao, Bin;Cao, Jiannong;Shao, Zili;Sha, Edwin H.M.
    • Journal of Communications and Networks
    • /
    • v.9 no.4
    • /
    • pp.499-510
    • /
    • 2007
  • Shortest path tree(SPT) construction is essential in high performance routing in an interior network using link state protocols. When some links have new state values, SPTs may be rebuilt, but the total rebuilding of the SPT in a static way for a large computer network is not only computationally expensive, unnecessary modifications can cause routing table instability. This paper presents a new update algorithm, dynamic shortest path tree(DSPT) that is computationally economical and that maintains the unmodified nodes mostly from an old SPT to a new SPT. The proposed algorithm reduces redundancy using a dynamic update approach where an edge becomes the significant edge when it is extracted from a built edge list Q. The average number of significant edges are identified through probability analysis based on an arbitrary tree structure. An update derived from significant edges is more efficient because the DSPT algorithm neglect most other redundant edges that do not participate in the construction of a new SPT. Our complexity analysis and experimental results show that DSPT is faster than other known methods. It can also be extended to solve the SPT updating problem in a graph with negative weight edges.