• Title/Summary/Keyword: Tree Dieback

Search Result 16, Processing Time 0.028 seconds

Modelling Analysis of Climate and Soil Depth Effects on Pine Tree Dieback in Korea Using BIOME-BGC (BIOME-BGC 모형을 이용한 국내 소나무 고사의 기후 및 토심 영향 분석)

  • Kang, Sinkyu;Lim, Jong-Hwan;Kim, Eun-Sook;Cho, Nanghyun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.242-252
    • /
    • 2016
  • A process-based ecosystem model, BIOME-BGC, was applied to simulate seasonal and inter-annual dynamics of carbon and water processes for potential evergreen needleleaf forest (ENF) biome in Korea. Two simulation sites, Milyang and Unljin, were selected to reflect warm-and-dry and cool-and-wet climate regimes, where massive diebacks of pines including Pinus densiflora, P. koraiensis and P thunbergii, were observed in 2009 and 2014, respectively. Standard Precipitation Index (SPI) showed periodic drought occurrence at every 5 years or so for both sites. Since mid-2000s, droughts occurred with hotter climate condition. Among many model variables, Cpool (i.e., a temporary carbon pool reserving photosynthetic compounds before allocations for new tissue production) was identified as a useful proxy variable of tree carbon starvation caused by reduction of gross primary production (GPP) and/or increase of maintenance respiration (Rm). Temporal Cpool variation agreed well with timings of pine tree diebacks for both sites. Though water stress was important, winter- and spring-time warmer temperature also played critical roles in reduction of Cpool, especially for the cool-and-wet Uljin. Shallow soil depth intensified the drought effect, which was, however, marginal for soil depth shallower than 0.5 m. Our modeling analysis implicates seasonal drought and warmer climate can intensify vulnerability of ENF dieback in Korea, especially for shallower soils, in which multi-year continued stress is of concern more than short-term episodic stress.

Effects of Pruning Season on Compartmentalization of Pruning Wounds in Acer palmatum and Pinus strobus

  • Lee, Kyu-Hwa;Lee, Kyung-Joon
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.2
    • /
    • pp.226-234
    • /
    • 2010
  • This study was conducted to examine the effects of pruning season on the compartmentalization of pruning wounds in Acer palmatum and Pinus strobus. A total of eighty five field-grown trees for each species were allocated to five different seasons, early- and late-winter, mid-spring, mid- and late-summer, for pruning treatments. Wound closure rate (WCR) of the two species for one year after treatment, area of discolored stem tissue on the medial longitudinal surface and cambial dieback length under the pruning wound of A. palmatum were measured. Changes of total phenols and variations of extractives, holocellulose and lignin at the treated branch unions were examined. In WCR of A. palmatum, late-winter (March, 39.8%) and mid-spring (May, 39.7%) were higher than any other seasons, while early-winter (November, 28.4%) was significantly lower than late-winter and mid-spring. P. strobus showed similar results with A. palmatum. The WCR of early-winter (57.2%) was the lowest significantly among the five seasons, and mid-spring (73.5%) and late-winter (71.4%) showed higher a WCR than other seasons. In the discolored/wound area ratio of A. palmatum, early-winter (73.2%) was the highest by far, and mid- (July) and latesummer (September, 36.7%, respectively) were the lowest among the five seasons. In the length of cambial dieback, two dormant seasons, early- and late-winter were longer than any other seasons. Phenol contents at the treated branch union were changed in line with the seasonal fluctuation of the tree. Total phenols in the below core of the treated union were higher than those of the branch union with living branch, while little differences were seen in the above core. At the branch core of the treated union, phenols of A. palmatum decreased one month after the treatments, but P. strobus maintained similar to or a little higher than those at the controls. The major changes in chemical composition at pruning wounds were extractives and lignin increased by less than 20% in A. palmatum, while extractives in P. strobus remarkably increased by 70%.

Distribution of Bursaphelenchus xylophilus in Naturally Infected Pinus densiflora and P. koraiensis and Migration of B. xylophilus in Artificially Inoculated P. densiflora Seedlings (자연감염된 소나무와 잣나무 내 소나무재선충 분포 및 인공접종한 소나무 묘목 내에서의 소나무재선충 이동)

  • Kim, Jae-Geun;Kim, Byung-Kwan;Lee, Seung-Kyu;Kim, Jin-Cheol;Han, Sang-Sub;Cha, Byeong-Jin
    • Research in Plant Disease
    • /
    • v.18 no.2
    • /
    • pp.101-108
    • /
    • 2012
  • In 2006, pinewood nematode, Bursaphelenchus xylophilus, was isolated from about 50 years old trees of Pinus densiflora and P. koraiensis showing leaf-wilt and -drying symptoms in Gwangju, Gyeonggi-do and Chuncheon, Gangwon-do. Isolation of pinewood nematodes from sapwood of infected pine trees showed no difference in population density between tree species and among the sampling heights on the main stem. Migration of pinewood nematodes in the host tree were investigated by inoculation of red pine (P. densiflora, 3 years old) seedlings with B. xylophilus. The nematodes seemed to move in red pine seedlings prior to multiplication and it might have taken about 20 days to start multiplication and expression of symptoms including wilt and dieback. In initial time after inoculation, nematodes started migration through the cortical resin canal from inoculated site and further showed upward and downward movements. More nematodes were observed in cortical resin canal during early period of inoculation and later in resin canal of xylem and tracheid also while, the pith still remained free from nematode. The density of B. xylophilus was higher in seedlings of low-vigor with poor root growth than in seedlings of normal root growth. Seedlings showing high density of B. xylophilus exhibited stem discoloration and secondary infection by fungus at the inoculation site.

Studies on the Structure of Forest Community at Turobong-Sangwangbong Area in Odaesan National Park - Abies nephrolepis and Taxus cuspidata Forest - (오대산 국립공원 두노봉-상왕봉 지역의 삼림군집구조에 관한 연구 - 분비나무림과 주목림 -)

  • 김갑태;엄태원;추갑철
    • Korean Journal of Environment and Ecology
    • /
    • v.10 no.1
    • /
    • pp.160-168
    • /
    • 1996
  • To investigate the structure and the conservation strategy of natural forest at Turobong-Sangwangbong area in Odaesan, 19 plots(10*10m) were set up with random sampling method. Several characteristics - needle injury, rate of fallen needle, stem injury, shoot and twig, apical dominance, tree form- of Abies nephrolepis and Tavus cuspidata were investigated with checklist. Two groups(Taxus cuspidata community and Quercus mongolica-Betula ermanii community) were classified by cluster analysis. High positive correlations were prover between Taxus cuspidata and Tripterygium regelii, Sorbus commixta; Quercus mongolica and Euonymus sieboldianus. High negative correlations were proved between Taxus cuspidata and Abies nephrolepis, Quercus mongolica and Betula ermanii; Abies nephrolepis and Trioterygum regelii. Species diversity(H') of investigated area was 0.9608-1.24990. Mean score of Abies nephrolepis was calculated at 6.1 point and ratio of dead individuals was 10.9%. Mean score of Taxus cuspidata was calculated at 17.3 point. Injury of Taxus cuspieata was classified three types, such as branch dieback, wound cavity on the stem and crooked stem.

  • PDF

An Analysis of the Hail Damages to Korean Forests in 2017 by Meteorology, Species and Topography (2017년 우박에 의한 산림피해의 기상, 수종 및 지형 특성 분석)

  • Lim, Jong-Hwan;Kim, Eunsook;Lee, Bora;Kim, Sunhee;Jang, Keunchang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.4
    • /
    • pp.280-292
    • /
    • 2017
  • Hail is not a frequently occurring weather event, and there are even fewer reports of hail damages to forest stands. Since the 2000s, an increase in hail incidence has been documented in Europe and the United States. In Korea, severe hails occurred in Jeollanam-do province on May 31 and in Gyeongsangbuk-do province on June 1, 2017. Hail size was ranged from 0.5 to 5.0 cm in diameter in Jeollanam-do, and from 1.5 to 3.0 cm in Gyeongsangbuk-do. This study was aimed to analyze the hail damages to forests by species and topography based on damage-categorized maps created by using drones and aerial photographs, and to analyze relationships of the damages with meteorological factors. The total damaged forest area was 1,163.1ha in Jeollanam-do, and 2,942.3ha in Gyeongsangbuk-do. Among the 'severe' damaged area 326.7ha, 91% was distributed in Jeollanam-do, and concentrated in the city of Hwasun which covers 57.2% of the total 'severe' damaged area. The most heavily damaged species was Korean red pine(Pinus densiflora S. & Z.) followed by P. rigida. Most broad-leaved trees species including oaks were recovered without any dead trees found. Liliodendron tulipifera was the most severely damaged in terms of the rate of 'severe' degree individuals which are needed to be checked whether they will die or be recovered. Cause of the death of pines was considered as the combination of physical damage caused by the hail and long-lasting drought with high air temperature that occurred before and after the hail event. No pathogens and insects were found which might have affected to tree deaths. We suggested a dieback mechanism of the pine trees damaged by hail and drought.

Effects of Drought Stress and Nitrogen Fertilization on Growth and Physiological Characteristics of Pinus densiflora Seedlings Under Elevated Temperature and CO2 Concentration (대기 중 온도 및 CO2 농도 조절에 따른 건조 스트레스와 질소 시비가 소나무의 생장 및 생리적 특성에 미치는 영향)

  • Song, Wookyung;Lee, Bora;Cho, Nanghyun;Jung, Sungcheol;Kim, Eun-Sook;Lim, Jong-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.2
    • /
    • pp.57-67
    • /
    • 2020
  • Pinus densiflora is the most widely distributed tree species in South Korea. Its ecological and socio-cultural attributes makes it one of the most important tree species in S. Korea. In recent times however, the distribution of P. densiflora has been affected by dieback. This phenomenon has largely been attributed to climate change. This study was conducted to investigate the responses of growth and physiology of P. densiflora to drought and nitrogen fertiliz ation according to the RCP 8.5 scenario. A Temperature Gradient Chamber (TGC) and CO2. Temperature Gradient Chamber (CTGC) were used to simulate climate change conditions. The treatments were established with temperature (control versus +3 and +5℃; aCeT) and CO2 (control: aCaT versus x1.6 and x2.2; eCeT), watering(control versus drought), fertilization(control versus fertilized). Net photosynthesis (Pn), stomatal conductance (gs), biomass and relative soil volumetric water content (VWC) were measured to examine physiological responses and growth. Relative soil VWC in aCeT significantly decreased after the onset of drought. Pn and gs in both aCeT and eCeT with fertiliz ation were high before drought but decreased rapidly after 7 days under drought because nitrogen fertilization effect did not last long. The fastest mortality was 46 days in aCeT and the longest survival was 56 days in eCeT after the onset of drought. Total and partial biomass (leaf, stem and root) in both aCeT and eCeT with fertiliz ation were significantly high, but significantly low in aCeT. The results of the study are helpful in addressing P. densiflora vulnerability to climate change by highlighting physiological responses related to carbon allocation under differing simulated environmental stressors.