• Title/Summary/Keyword: Treatment of Korean food-wastes

Search Result 66, Processing Time 0.037 seconds

A Study on the Utilization of Industrial Solid Organic Wastes (I). The Physical and Chemical Characteristics of Industrial Solid Wastes with Regard to Fertilizer Value and Humus Sources (산업 고형유기폐물의 자원화에 관한 연구 (제1보) 산업 고형유기폐물의 비료와 Humus 원으로서의 물리적 및 화학적 특성에 관하여)

  • Park Nae Joung;Kim, Yong In
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.4
    • /
    • pp.258-268
    • /
    • 1975
  • The physical and chemical characteristics of solid organic wastes from paper and pulp industries, tanneries, and food processing industries were studied with regard to fertilizer value as well as humus sources as a rational method of waste utilization. The pulp and paper mill wastes containing low mineral nutrients but high lignin may be utilized for soil amendments through humus preparation. Chemical treatment sludges of tannery wast water contained appreciable fertilizer nutrients andiliming materials, but utilization as fertilizers or soil amendments depends on the pollution effect of high chromium content, which has not been well understood. Food processing wastes may be utilized as organic fertilizers or micronutrient sources for plant. Some wastes containing high water-soluble sugars or lower C/N ratio than 20 may be utilized as additives for rapid humus preparation.

  • PDF

Characteristics of Municipal Solid Wastes and Heating Value in Tourist Season of the eastern side of Gangwondo (강원 영동지역의 관광철 폐기물 및 발열량 특성)

  • Lee Hae-Seung;Choi Yong-Bum
    • Journal of environmental and Sanitary engineering
    • /
    • v.21 no.1 s.59
    • /
    • pp.66-75
    • /
    • 2006
  • When we looked at the seasonal food dregs of the eastern side of gangwondo, gangneung city's summer and winter food dregs showed 25.9 and 25.8% respectively due to the presence of beach areas and ski resorts. Sokcho city showed 28.12% in summer and yangyang gun's summer food dregs showed 40.2%. Yangyang gun's august food dregs showed 2.7 times larger than annual average amount. Outlook density showed regional characteristics. Data showed that food dregs' amount rate has been reduced gradually from 2005 because of the prohibition of direct filling up. As a result of compositions analysis, the eastern side of gangwondo's water fraction of living dregs were lower than that of chuncheon city where is located at the gangwondo's inland area. chuncheon city's data showed residential areas 53.5%, community areas 56.8% and commercial areas 55.6%. These discrepancies caused by the characteristics of dregs discharge type and climate. The caloric value of dregs has been increased incrementally after the ban of food dregs' direct filling up. Therefore, heating value of the dregs exceeds the existing furnace design spec and it can cause high caloric value problems, so we need additional research to solve these problems.

A Study of Treatment of Cattle Manure and Food Waste by Vermicomposting (Vermicomposting에 의한 우분과 음식물쓰레기의 처리에 관한 연구)

  • Jo, Ik-Hwan;Lee, Ju-Sam
    • Korean Journal of Organic Agriculture
    • /
    • v.11 no.4
    • /
    • pp.93-102
    • /
    • 2003
  • This research was made to determine the optimum mixing ratio cattle manure and food waste investigating the effect that gets the growth and reproductive efficiency of earthworm and productivity of earthworm casts at processing process when handled cattle manure and food waste by vermicomposting, in order to establish the treatment system of organic wastes by vermicomposting. Survival ratio of earthworm was highest in the mixing ratio 80~100% : 20~0% of cattle manure and food Waste, and the increasing ratio was highest in cattle manure 100%, and the number of young worms, the weight of young worms and the productivity of earthworm casts in plots more than the mixing ratio 60% of cattle manure were significantly higher than in the other treatment plots(p<0.05). Total nitrogen and carbon contents in earthworm cast were decreased when rearing time of earthworm was increased. Carbon and nitrogen rate(C/N) of earthworm cast in plots more than the mixing ratio 80% of cattle manure was significantly higher than in the other treatment plots(p<0.05). pH in earthworm cast was higher than that in residual matter. The contents of electrolytic conductivity in the higher mixing ratio of food waste were significantly higher than those in the other treatment plots(p<0.05).

  • PDF

Development of Porous Media for Sewage Treatment by Pyrolysis Process of Food Wastes with Loess (음식물 쓰레기 및 황토 혼합물의 열분해를 통한 수질정화용 다공성 담체 개발)

  • Kim, Sang-Bum;Lee, Myong-Hwa;Kim, Yong-Jin;Park, Chul-Hwan;Lee, Jong-Rae;Kim, Gyung-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.3
    • /
    • pp.289-296
    • /
    • 2007
  • Porous media for sewage treatment were developed through a pyrolysis process of food wastes with loess in the study. This work was carried out in two consecutive stages; in the first stage, new porous media were prepared through a high temperature pyrolysis process, and then the resultant media were applied to a simple lab-scale sewage treatment process in the second stage. To determine the optimum operating conditions of pyrolysis and mixing ratio of materials, physical properties such as specific surface area, porosity and compressive strength of final products were analyzed. The removal efficiencies of TOC and COD were measured to evaluate the effectiveness of resultant porous media. As a result of the experiment, we found that the best mixing ratio of food wastes to loess was 1 : 1 at $1,100^{\circ}C$. Average porosity of the developed media was 37.0%, in which pore size ranged from 1 to $20{\mu}m$, showing quite vigorous microbial activation. After immersing the media into a reactor for sewage treatment for eight days, removal efficiencies of TOC and COD were 87.3% and 85.0%, respectively.

Available Technology and Integrated Management Plan for Energy-positive in the Sewage Treatment Plant (에너지 생산형 하수처리장을 위한 가용 기술과 통합관리 방안)

  • Song, Minsu;Kim, Hyoungho;Bae, Hyokwan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.1
    • /
    • pp.55-68
    • /
    • 2020
  • Because of the intensified environmental problems such as climate change and resource depletion, sewage treatment technology focused on energy management has recently attracted attention. The conversion of primary sludge from the primary sedimentation tank and excessive sludge from the secondary sedimentation tank into biogas is the key to energy-positive sewage treatment. In particular, the primary sedimentation tanks recover enriched biodegradable organic matter and anaerobic digestion process produces methane from the organic wastes for energy production. Such technologies for minimizing oxygen demand are leading the innovation regarding sewage treatment plants. However, sewage treatment facilities in Korea lack core technology and operational know-how. Actually, the energy potential of sewage is higher than sewage treatment energy consumption in the sewage treatment, but current processes are not adequately efficient in energy recovery. To improve this, it is possible to apply chemically enhanced primary treatment (CEPT), high-rate activated sludge (HRAS), and anaerobic membrane bioreactor (AnMBR) to the primary sedimentation tank. To maximize the methane production of sewage treatment plants, organic wastes such as food waste and livestock manure can be digested. Additionally, mechanical pretreatment, thermal hydrolysis, and chemical pretreatment would enhance the methane conversion of organic waste. Power generation systems based on internal combustion engines are susceptible to heat source losses, requiring breakthrough energy conversion systems such as fuel cells. To realize the energy positive sewage treatment plant, primary organic matter recovery from sewage, biogas pretreatment, and co-digestion should be optimized in the energy management system based on the knowledge-based operation.

Pilot Scale Anaerobic Digestion of Korean Food Waste (파일로트 규모 음식쓰레기 2상 혐기소화 처리공정에 관한 연구)

  • Lee, J.P.;Lee, J.S.;Park, S.C.
    • Solar Energy
    • /
    • v.18 no.3
    • /
    • pp.197-203
    • /
    • 1998
  • A 5 ton/day pilot scale two-phase anaerobic digester was constructed and tasted to treat Korean food wastes in Anyang city. The process was developed based on 3 years of lab-scale experimental results on am optimim treatment method for the recovery of biogas and humus. Problems related to food waste are ever Increasing quantity among municipal solid wastes(MSW) and high moisture and salt contents. Thus our food waste produces large amounts of leachate and bed odor in landfill sites which are being exhausted. The easily degradable presorted food waste was efficiently treated in the two-phase anaerobic digestion process. The waste contained in plastic bags was shredded and then screened for the removal of inert material such as fabrics and plastics, and subsequently put into the two-stage reactors. Heavy and light inerts such as bones, shells, spoons and plastic pieces were again removed by gravity differences. The residual organic component was effectively hydrolyzed and acidified in the first reactor with 5 days space time at pH of about 6.5. The second, methanization reactor part of which is filled with anaerobic fillters, converted the acids into methane with pH between 7.4 to 7.8. The space time for the second reactor was 15 days. The effluent from the second reactor was recycled to the first reactor to provide alkalinities. The process showed stable steady state operation with the maximum organic rate of 7.9 $kgVS/m^3day$ and the volatile solid reduction efficiency of about 70%. The total of 3.6 tons presorted MSW containing 2.9 tons of food organic was treated to produce about $230m^3$ of biogas with 70% of methane and 80kg humus. This process is extended to full scale treating 15 tons of food waste a day in Euiwang city and the produced biogas is utilized for the heating/cooling of adjacent buildings.

  • PDF

Slurry Phase Decomposition of Food Waste by Using Various Microorganisms (미생물을 이용한 액상소멸방식의 음식물쓰레기 처리)

  • Kwon, Bum Gun;Na, Suk-Hyun;Lim, Hye-Jung;Lim, Chae-Sung;Chung, Seon-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.5
    • /
    • pp.303-310
    • /
    • 2014
  • This study investigated the reduction of food waste through the slurry phase decomposition in a source of food waste by microorganisms. The reactor used in the experiment was composed of both woodchip with wood material and sponges with polyurethane material as media of attached microorganisms, and food waste was mixed with a constant cycle consisted of a stirring device. During the experimental period of 100 days, the change in weight over the cumulative total amount of food waste added was reduced by 99%. Approximately, 1% of the residual food waste could be inherently recalcitrant materials (cellulose, hemicellulose, lignin, etc.) and thus was thought to be the result of the accumulation. The initial pH in wastewater generated from food waste was low with 3.3 and after 24 hours treatment this pH was increased to 5.8. The concentrations of COD, BOD, SS, salinity, TN and TP were gradually decreased. Food waste decay was proceeded by the seven species microorganisms identified and confirmed in this study, making a slurry phase and thus reducing residual food wastes. In the initial phase, the microbial population was approximately $3.3{\times}10^4$ cell/mL, and after 15 days this population was a constant with $5.1{\times}10^6$ cell/mL which means a certain stabilization for the reduction of food wastes. From these results, it can be considered that organic matter decomposition as well as the weight loss of food wastes by microorganisms is done at the same time.

Use of Exo-polygalacturonase to Improve Extraction Yields of Alginic Acid from Sea Mustard (Undaria pinnatifida)

  • Lee, Seung-Cheol;Oh, Jeong-Hoon;Hwang, Yong-Il;Kim, Jeong-Mok
    • Preventive Nutrition and Food Science
    • /
    • v.7 no.3
    • /
    • pp.317-319
    • /
    • 2002
  • Exo-polygalacturonase (EPG) from Rhizopus sp. was applied to the extraction of alginic acid from sea mustard to increase extraction yield. EPG digestion was examined under distinct conditions within temperatures from $25^{\circ}C$ to 5$0^{\circ}C$, pH 5 to 9, and treatment times from 0 to 36 hr. The optimal conditions fur alginic acid extraction with EPG were: pH 7.0 at 3$0^{\circ}C$ for 24 hrs. The EPG hot water extraction yield was 3.4 times higher yield than hot water extraction alone. Using EPG to extract alginic acid from sea mustard should be considered a viable alternative to conventional extraction, with the advantage of reducing hazardous wastes such as strong acid and alkali solutions.

Study on bio-gas production efficiency from industrial organic waste (산업계 유기성폐기물 바이오가스 생산 효율에 관한 연구)

  • Lee, Horyeong;Jin, Hyoeon;Shin, Daeyewn
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.5
    • /
    • pp.629-636
    • /
    • 2012
  • This study focuses on the feasibility of bio-gas production using anaerobic digestion by measuring methane generation and biodegradability through the BMP test of industrial organic wastes. Organic wastes consist of entrails of pigs and organic residues of rumen generated from slaughter houses, wastewater sludge from slaughter waste water, fish offal and residues of vegetables from public wholesale markets, and wastewater sludge from the process of wastewater treatment in paper mill. The cumulative methane production by BMP test ranges from 149.3 ml/g-VS to 406.6 ml/g-VS and this is similar to methane generation of the normal wastewater sludge and food waste. As a result of measurement of biodegradability, wastewater sludge (S1 ~ S4) is low, ranging from 27.1% to 58.9 % and organic residues of rumen (G1) is low at 49.6 %. In conclusion, it turned out that raising the hydrolysis by various pre-treatments is necessary in order to produce bio-gas by using industrial organic wastes.

Production of Polyhydroxybutyrate from Crude Glycerol and Spent Coffee Grounds Extract by Bacillus cereus Isolated from Sewage Treatment Plant

  • Lee, Gi Na;Choi, So Young;Na, Jonguk;Youn, HaJin;Jang, Yu-Sin
    • KSBB Journal
    • /
    • v.29 no.6
    • /
    • pp.399-404
    • /
    • 2014
  • Production of biodegradable polymer polyhydroxyalkanoates (PHAs) from industrial wastes exhibits several advantages such as recycle of waste and the production of high valuable products. To this end, this study aimed at isolating from the sewage treatment plant a PHA producing bacterium capable of utilizing wastes generated from biodiesel and food industries. A Bacillus cereus strain capable of producing poly(3-hydroxybutyrate) [P(3HB)] was isolated, which was followed by confirmation of P(3HB) accumulation by gas-chromatographic analyses. Then, the effects of nutrient limitation on P(3HB) production by B. cereus was first examined. Cells cultured in a minimal medium under the limitation of nitrogen, potassium and sulfur suggested that nitrogen limitation allows the highest P(3HB) accumulation. Next, production of P(3HB) was examined from both waste of biodiesel production (crude glycerol) and waste from food industry (spent coffee grounds). Cells cultured in nitrogen-limited minimal medium supplemented crude glycerol and waste spent coffee grounds extract accumulated P(3HB) to the contents of 2.4% and 1.0% of DCW. This is the first report demonstrating the capability of B. cereus to produce P(3HB) from waste raw materials such as crude glycerol and spent coffee grounds.