• 제목/요약/키워드: Treatment of Coal

Search Result 244, Processing Time 0.028 seconds

Preparation of Coal Tar Pitch as Carbon Fibers Precursor from Coal Tar (콜타르로부터 탄소섬유 제조를 위한 프리커서용 석탄계 핏치의 제조)

  • Ko, Hyo Joon;Park, Chang Uk;Cho, Hyo Hang;Yoo, Mi Jung;Kim, Myung-Soo;Lim, Yun-Soo
    • Korean Journal of Materials Research
    • /
    • v.23 no.5
    • /
    • pp.276-280
    • /
    • 2013
  • Coal tar is the primary feedstock of premium graphitizable carbon precursor. Coal tars are residues formed as byproducts of thermal treatments of coal. Coal tar pitches were prepared through two different heat treatment schedules and their properties were characterized. One was prepared with argon and oxidation treatment with oxygen; the other was prepared with oxygen treatment at low temperature and then argon treatment at high temperature; both used coal tar to prepare coal tar pitches. To modulate the properties, different heat treatment temperatures ($300{\sim}400^{\circ}C$) were used for the coal tar pitches. The prepared coal tar pitches were investigated to determine several properties, such as softening point, C/H ratio, coke yield, and aromaticity index. The coal tar pitches were subject to considerable changes in chemical composition that arose due to polymerization after heat treatment. Coal tar pitch showed considerable increases in softening point, C/H ratio, coke yields, and aromaticity index compared to those characteristics for coal tar. The contents of gamma resin, which consists of low molecular weight compounds in the pitches and is insoluble in toluene, showed that the degree of polymerization in the pitches was proportional to C/H ratio. Using an oxidizing atmosphere like air to prepare the pitches from coal tar was an effective way to increase the aromaticity index at relatively low temperature.

Development of Treatment Process for Residual Coal from Biosolubilization

  • Rifella, Archi;Shaur, Ahmad;Chun, Dong Hyuk;Kim, Sangdo;Rhim, Young Joon;Yoo, Jiho;Choi, Hokyung;Lim, Jeonghwan;Lee, Sihyun;Rhee, Youngwoo
    • Clean Technology
    • /
    • v.24 no.2
    • /
    • pp.119-126
    • /
    • 2018
  • This study introduced a treatment process that was developed to treat Indonesian low-rank coal with high-ash content, which has the same characteristics as residual coal from the biosolubilization process. The treatment process includes separation of ash, solid-liquid separation, pelletizing, and drying. To reduce the ash content, flotation was performed using 4-methyl-2-pentanol (MIBC) as frother, and kerosene, waste oil, and cashew nut shell liquid (CNSL) as collectors. The increasing amount of collector had an effect on combustible coal recovery and ash reduction. After flotation, a filter press, extruder, and an oven drier were used to make a dried coal pellet. Then another coal pellet was made using asphalt as a binder. The compressive strength and friability of the coal pellets were tested and compared.

The treatment of coal fly ash for recycling as ceramic raw materials : II. The effects of sampling condition and pH treatment in elutriation (요업 원료로 재활용하기 위한 석탄회의 처리 : II. 채취조건 및 수비선별시 pH의 영향)

  • 허화범;정철원;박종현;신건철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.4
    • /
    • pp.627-639
    • /
    • 1996
  • Charateristics of Ansan and Boryong coal fly ashes collected at different seasons were investigated for the recycling them as ceramic raw materials. The effect of pH treatment on the classification of Ansan coal fly ashes by elutriation was discussed. Charateristics of ansan and boryong coal fly ashes were not significantly changed with power plants and seasons. major crystalline phases were mullite and quartz. These results suggested that coal fly ashes cab be used as raw materials instead of clay minerals. However, particle size distribution was very broad from a few $\mu\textrm{m}$ to over $100\;\mu\textrm{m}$. Especially, ansan coal fly ashes have various morphologies. Therefore, coal fly ashes should be classified before using as raw materials. Because of higher dispersion by pH treatment, spherical cenospheres were mainly collected in the 4th step and particle size distribusion was also decreased by elutriation for the ansan coal fly ashes. The specific surface area of the sample collected in the 4th step was $1.24\;m^{2}/g$ which was smaller than that of not treated Ansan coal fly ashes.

  • PDF

Effect of the Heat Treatment Temperature on the Compressive Strength of Coal Powder Compacts

  • Seo, Seung-Kuk;Roh, Jae-Seung
    • Carbon letters
    • /
    • v.13 no.3
    • /
    • pp.151-156
    • /
    • 2012
  • This study considered the effect of the heat treatment temperature on the compressive strength of coal powder compacts affected by density, porosity, and crystallinity. Coal powder compacts were made by pressing of milled coal powder and were heat treated at 200, 400, 600, 800, and $1000^{\circ}C$. The density and porosity of the heat treated specimens at each temperature were measured using the Archimedes method and changes in crystallinity were analyzed using Raman spectroscopy. Increases in compressive strength at $600^{\circ}C$ or higher temperatures were proportionally related to increases in the density and the degree of crystallinity.

Study on Coal Combustion Characteristics with 1MWth Test Facility (1MWth 실험연소로를 이용한 석탄의 연소특성 연구)

  • Jang, Gil Hong;Chang, In Gab;Jeong, Seok Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.11
    • /
    • pp.1464-1472
    • /
    • 1999
  • Design and operation of $1MW_{th}$ pulverized coal combustion testing facility are described. Also the influence of air staging on NOx emission and burnout of coal flames was investigated in this facility. The test facility consisted of coal feeding system, firing system and flue gas treatment system. A top-fired externally air staging burner was adopted in order to avoid influence of gravity on the coal particles and for easy maintenance. Distribution of temperature and chemical species concentration of coal flames could be measured in vertical pass of furnace. Main fuel was pulverized (83.4% less than $80{\mu}m$) Australian high bituminous coal. From variety of test conditions, overall excess air ratio was selected at 1.2(20% excess air). Tho study showed that increasing the staged air resulted in lower NOx omission, and it was suggested to be more than 40% of the total combustion air for the substantial NOx reduction. Sufficient burnout was not achievable when NOx emission was less than 500ppm. Also, the amount of core air did not influence tho NOx reduction.

A Study on Expanding the Recycling of Coal Ash for Minimizing Environmental Impact Imposed by the Establishment of Thermal Power Plant Ash Ponds (화력발전소 회처리장 조성에 따른 환경영향 최소화를 위한 석탄회 재활용 확대방안에 관한 연구)

  • Suh, Dong-Hwan;Maeng, Jun-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.5
    • /
    • pp.472-486
    • /
    • 2015
  • More than 8M tons of coal ashes are generated from coal-fired thermal power plants every year in Korea. Excluding the recycled portion (Current recycling rate: approximately 70%), all of the generated coal ashes end up in coastal landfills. Currently, the difficulties faced in establishing new ash treatment fields are attributed to the concerns raised over the environmental impacts caused by the landfills at individual plant facilities. Given the number of coal-fired thermal power plants to be built in the future (reflected in the 7th Basic Plan for Long-term Electricity Supply and Demand), building new ash treatment fields or seeking a new treatment plan seems unavoidable. Based upon a review of coal ash and its management, this study concluded that the most effective and fundamental strategy to minimize the environmental impacts resulting from coal ash landfills is to avoid constructing new coal-fired powerplants and furthermore, suggests that the practice of beneficial use and recycling the produced coal wastes should be encouraged.

Reclamation of the Closed/Abandoned Coal Mine Overburden Using Lime wastes from Soda Ash Production (부산석회를 활용한 휴ㆍ폐 석탄광산 폐기물의 안정화 및 식생복원)

  • 김휘중;양재의;옥용식;유경열;박병길;이재영;전상호
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.37-47
    • /
    • 2004
  • In Korea, over three hundreds of the coal mines were closed or abandoned due to the depression of the mining industry since the late 1980s. Many of them locate in the steep mountain valleys and the coal mine wastes had been disposed without a proper treatment From these mines, enormous amounts of coal mine overburdens have been abandoned in the slopes and the ample amounts of acid mine drainage (AMD) from either portal or overburdens have been discharging directly to the streams, causing the detrimental effects on soil and water qualities. Objectives of this research were to reclaim the coal mine overburdens using the lime waste cake from the soda ash production by stabilizing the overburden slopes, introducing the vegetation alleviate the environmental problems caused by the closed coal mines. The percentages of the grass distribution ratio (%) and the surface coverage ($\textrm{cm}^2$) in each treatment plot were determined during June to August after seed spraying grasses such as orchard grass (Dactylis glomerata L), Kentucky Bluegrass (Poa pratensis L.) and Eulalia (Miscanthus sinensis Anderss) at the end of May. The grasses covered only 15.5 % of the coal overburden plot at the early stage but the coverage was increased with time to 33% in August. Growth of such grasses was enhanced with the combined treatments of lime waste and topsoil resulting in the increased surface coverage by the grasses. The Increment of the surface coverage from June to August was higher with lime waste treatments. The distribution percentages and surface coverage were highest when the lime wastes were treated at 25 % of the lime requirement. This might be related with the high salt contents in the hire wastes. Results demonstrated that the amounts of lime wastes at 25% of the lime requirement were sufficient for neutralizing the acidic coal overburden and introducing the re-vegetation. Either layering between the coal waste and topsoil or mixing with coal overburdens could be adopted as the lime waste treatment method. The combined treatment of lime wastes and topsoil was recommended for re-vegetation in the coal overburden slopes. The lime wastes from the soda ash production might have a potential to be recycled for the reclamation of the abandoned coal mines to alleviate the environmental problems associated with coal mine waste.

  • PDF

The First Operation of Coal Combustion Test Facility in HANJUNG (HANJUNG 석탄 실험연소로의 초기운전)

  • Jang, G.H.;Chang, I.G.;Jeong, S.Y.;Chon, M.H.;Kim, J.S.
    • 한국연소학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.79-84
    • /
    • 1998
  • In this paper we show design and operation of 1MWth pulverized coal combustion test facility. The test facility is consists of coal feeding system, furnace and flue gas treatment system. The furnace is equipped with a top-fired burner in order to avoid influence of gravity on the coal particles. There are two part of vertical(VP) and horizontal pass(HP) at furnace. We can measure temperature and species of coal flames in vertical pass. Also, there is horizontally arranged section where investigation regarding corrosion and deposit formation will be carried out. The burner of combustor was externally air staging burner(EASB) type made by IFRF. The pulverized high bituminous(Blair athol) coal from Australia was used as fuel, and the particle size less than 80 ${\mu}m$ was 83.4%. Overall excess air ratio was 1.2.

  • PDF

Changes of Microstructure and Properties of Manufactured Modified Pitches via Pressure Changes during Heat Treatments in Coal Tar Pitch (석탄계 타르의 열처리 중 압력변화에 따른 변성 콜타르 핏치의 미세구조 및 물성 변화)

  • Ko, Hyo Joon;Chung, Sung Mo;Han, Ji Hoon;Park, Chang Uk;Kim, Myung-Soo;Lim, Yun-Soo
    • Korean Journal of Materials Research
    • /
    • v.24 no.6
    • /
    • pp.293-300
    • /
    • 2014
  • Coal-tar pitch, a feedstock which can be heat-treated to create graphite, is composed of very complex molecules. Coal-tar pitch is a precursor of many useful carbon materials (e.g., graphite, carbon fibers, electrodes and matrices of carbon/carbon composites). Modified coal-tar pitch (MCTP) was prepared using two different heat-treatment methods and their properties were characterized and compared. One was prepared using heat treatment in nitrogen gas; the other was prepared under a pressure of 350 mmHg in air. The MCTPs were investigated to determine several properties, including softening point, C/H ratio, coke yield, formation of anisotropic mesophase and viscosity. The MCTPs were subject to considerable changes in chemical composition due to condensation and polymerization in the used-as-received coal-tar pitch after heat-treatment under different conditions. The MCTPs showed considerable increases in softening point, C/H ratio, and coke yield, compared to those of as-received coal-tar pitch. The MCTP formed by heat-treatment in nitrogen showed isotropic phases below $350^{\circ}C$ for 1 h of soaking time. However, MCTP heat-treated under high pressure (350 mmHg) showed isotropic phases below $300^{\circ}C$, and showed anisotropic phases above $350^{\circ}C$, for 1 h of soaking time. The viscosity of the MCTPs increased with increase in their softening points.

Effect of Soil Ameliorators on Ectomycorrhizal Fungal Communities that Colonize Seedlings of Pinus densiflora in Abandoned Coal Mine Spoils

  • Lee, Eun-Hwa;Eo, Ju-Kyeong;Lee, Chang-Seok;Eom, Ahn-Heum
    • Mycobiology
    • /
    • v.40 no.3
    • /
    • pp.168-172
    • /
    • 2012
  • In this study, the effect of soil ameliorators on ectomycorrhizal (ECM) fungal communities in coal mine spoils was investigated. Organic fertilizers and slaked lime were applied as soil ameliorators in 3 abandoned coal mine spoils. One year after the initial treatment, roots of Pinus densiflora seedlings were collected and the number of ECM species, colonization rate, and species diversity were assessed. The results showed that the soil ameliorators significantly increased ECM colonization on the roots of P. densiflora. The results suggest that soil ameliorators can have a positive effect on ECM fungi in terms of growth of host plants and show the potential use of soil ameliorator treatment for revegetation with ECM-colonized pine seedlings in the coal mine spoils.