• Title/Summary/Keyword: Treatment concentration

Search Result 10,014, Processing Time 0.037 seconds

Allelopathic effects of red pepper (Capsicum annuum L.) and coriander (Coriandrum sativum L.) on early seedling growth of wheat (Triticum aestivum L.)

  • Iqbal, Muhammad Zafar;Ahmed, Lubna;Shafiq, Muhammad;Athar, Mohammad
    • Advances in environmental research
    • /
    • v.4 no.1
    • /
    • pp.1-15
    • /
    • 2015
  • A pot experiment was conducted to assess the effects of red pepper (Capsicum annuum) and coriander (Coriandrum sativum) on seedling growth of wheat (Triticum aestivum). The aqueous extracts treatment of red pepper and coriander showed a significant (p < 0.05) reduction in root, shoot and seedling length, number of leaves and seedling dry weight of wheat (T. aestivum) as compared to control. The inhibitory different effect on growth of wheat (T. aestivum) was directly proportional to the increasing concentration (1, 2, 3, 4 and 5%) of aqueous extracts of red pepper and coriander as compared to control treatment (0%). The root, shoot, seedling length and number of leaves of T. aestivum significantly p < 0.05 decreased at 5% concentration of red pepper as compared to control. The root, shoot and seedling growth of T. aestivum was also significantly reduced at 1, 2, 3, 4 and 5% concentration of coriander as compared to control. The root, shoot and leaves dry weight of T. aestivum at 5% coriander extract treatment concentration decreased as compared to control. The tolerance in seedlings of T. aestivum to red pepper and coriander extract treatment was dose dependent as compared to control. The seedlings of T. aestivum showed low percentage of tolerance to pepper extract treatment than coriander extract treatment.

Enzymatic hydrolysis of insoluble silk sericin by Alcalase

  • Jung, Hye-Young;Bae, Do-Gyu
    • Journal of Sericultural and Entomological Science
    • /
    • v.42 no.1
    • /
    • pp.48-57
    • /
    • 2000
  • This study was undertaken to figure out the effects of hydrolysis conditions on the solubility of insoluble sericin, molecular weight distribution and thermal characteristics of hydrolysates in enzymatic hydrolysis by Alcalase 2.5L. It was indicated that the optimum treatment temperature and pH for the insoluble sericin were 50$\^{C}$ and 11, respectively. When the insoluble sericin was hydrolyzed with a various treatment conditions, the solubility of all hydrolysates were represented above 85% at given conditions. As the enzyme concentration increased, the solubility increased roughly, but the solubility increasement ratio was less above 2% enzyme concentration. As the treatment time increased, the solubility was also increased. It was showed in the molecular weight distribution of hydrolysates treated various enzyme concentrations and treatment times that when enzyme concentrations were 0.5, 2, 3%, the peaks of the distribution curve were shifted to left side which meant low molecular weight and was distributed much quantity with shifted to be left side, but treatment time was 6 hr. the peak was shifted to right side. When enzyme concentration was 5% and treatment time was below 2 hr., the peaks were shifted to right side, but treatment time was above 4hr. the peak was shifted to left side. The number-average molecular weights were distributed from 300 to 800 and those were decreased when treatment time was up to 4 hr., but increased a little when treatment time was 6hr. It was showed in the DSC curves of hydrolysates treated with treatment time of 0.5, 1, 2, 4, 6 hr. fixed 1% o.w.s enzyme concentration and control that the endothermic peak was observed near at 200$\^{C}$. The denaturation peak of the hydrolysates depending on treatment times had a tendency to shift to higher temperature. But, when the treatment time was 6 hr., the peak was shifted to lower temperature comparing another hydrolysates.

  • PDF

The Effect of Irrigation Concentration on the Growth and Fruit Quality of Sweet Pepper(Capsicum annuum L.) in Fertigation (관비재배에서 급액농도가 착색단고추의 생육과 품질에 미치는 영향)

  • 배종향;김귀호
    • Journal of Bio-Environment Control
    • /
    • v.13 no.3
    • /
    • pp.167-171
    • /
    • 2004
  • Objective of this research was to investigate the effect of irrigation concentration on the growth and fruit quality of sweet pepper(Capsicum annuum L.) in fertigation. The sweet pepper was grown for 210 days with irrigation concentration of EC 0.5, 1.0, 1.5, 2.0, and 3.0 dSㆍ$m^{-1 }$ in fertigation nutrient solution developed by European Vegetable R & D Center, Belgium. The net $CO_2$ assimilation and transpiration rate were the highest in the treatment of 2.0 dSㆍ$m^{-1 }$. The pH in the soil was range of 5.63 ~6.03, the EC increased as the irrigation concentration was getting higher. The SPAD value also increased as the irrigation concentration was getting higher, N, P, K, Mg except Ca were highest in the treatment of EC 2.0 dSㆍ$m^{-1 }$. The growth was good in the treatment of EC 2.0 dSㆍm$m^{-1 }$. The fruit length, width, firmness, and pericarp thickness had no statistical differences among treatments, the fruit fresh weight and dry weight were good in the treatment of EC 2.0 dSㆍ$m^{-1 }$ the yield was good in the treatment of EC 1.5 dSㆍ$m^{-1 }$ and EC 2.0 dSㆍ$m^{-1 }$ The sugar contents was the highest in the treatment of EC 2.0 dSㆍ$m^{-1 }$ with 9.0$^{\circ}$Brix. In conclusion, the optimal irrigation concentration for sweet pepper fertigation was EC 2.0 dSㆍm$^{-1}$ .

The change of oral volatile sulfur compounds(VSC) concentration after periodontal treatment (치주치료 후 구강 내 Volatile Sulfur Compounds(VSC)의 변화)

  • Kim, Sung-Hyun;Chae, Gyeong-Jun;Jung, Ui-Won;Kim, Chang-Sung;Choi, Seong-Ho;Cho, Kyoo-Sung;Chai, Jung-Kyu;Kim, Chong-Kwan;Bang, Eun-Gyeong
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.3
    • /
    • pp.653-659
    • /
    • 2006
  • Oral malodor may cause a significant social or psychological handicap to those suffering from it. Oral malodor has been correlated with the concentration of volatile sulfur compounds (VSC) produced in the oral cavity. Specific bacteria identified in the production of VSC have been reported and many of these bacteria are commonly suspected periodontal pathogens. The aim of this study was to estimate the change of the VSC concentration after periodontal treatment, Twenty subjects with probing depth $(PD)\;{\geq}5mm$ (experimental group) and 20 subjects with PD<5mm (control group) participated. VSC concentration measurement was made with gas chromatography. VSC concentration was measured at pre-treatment, 2 weeks after scaling and 1 month after periodontal treatment(root planning and flap operation). Maximum probing depth and bleeding on probing(BOP) were also examed at pretreatment and 1 month after periodontal treatment, The conclusions were as follow: 1. In the experimental group VSC concentration and CH3SH/H2S ratio were higher than control group. (p<0.05) 2. Both VSC concentration and CH3SH/H2S ratio showed decrease after periodontal treatment, But only CH3SH/H2S ratio after 1 month periodontal treatment was statistically significantly different from pre-treatment. (p<0.05) 3. CH3SH/H2S ratio tended to be on increase according to maximum probing depth and bleeding on probing. Periodontal disease could be a factor that caused oral malodor and oral malodor could be decreased after periodontal treatment.

A study on Determination Method of the Compliance Concentration of Effluent Limitation from Public Sewage Treatment Works in the Jinwee-stream Watershed Sewer System (유역하수도 공공하수처리시설의 방류수 수질 준수농도 설정방안 연구: 진위천 수계를 중심으로)

  • Jeong, Dong-Hwan;Cho, Yangseok;Kim, Youngseok;Ahn, Kyunghee;Chung, Hyen-Mi;Kwon, Ohsang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.4
    • /
    • pp.493-502
    • /
    • 2015
  • In accordance with the Watershed Sewer System Maintenance Plan enforced on February 2, 2013, the different compliance concentration of effluent limit be applied to effluent discharged from public sewage treatment works(PSTWs) in each watershed on the basis of water quality thereof. With the introduction of watershed sewer system, it is necessary to set the compliance concentration of effluent limit for PSTWs situated in the watershed, by region and PSTW size, to achieve water quality criteria for regional watersheds or target water quality under TMDL program. Watershed Environmental Agencies establish the Watershed Sewer System Maintenance Plan and set the compliance concentrations of effluent limit for PSTWs under the plan. The agencies plan to apply tougher effluent BOD concentration limits in Class I to IV areas. Effluent BOD concentration limits will be toughened from 5~10 mg/L to 3 mg/L in class II~III areas, from 10mg/L to 5mg/L in class IV areas. Uniform application of effluent BOD concentration limits to PSTWs in the watershed sewer system need to be complemented considering type of sewage treatment technology employed and watershed characteristics. Therefore, this study presents method to determine the compliance concentration of effluent limit from PSTWs in the watershed.

Effect of chemical concentrations on strength and crystal size of biocemented sand

  • Choi, Sun-Gyu;Chu, Jian;Kwon, Tae-Hyuk
    • Geomechanics and Engineering
    • /
    • v.17 no.5
    • /
    • pp.465-473
    • /
    • 2019
  • Biocementation due to the microbially induced calcium carbonate precipitation (MICP) process is a potential technique that can be used for soil improvement. However, the effect of biocementation may be affected by many factors, including nutrient concentration, bacterial strains, injection strategy, temperature, pH, and soil type. This study investigates mainly the effect of chemical concentration on the formation of calcium carbonate (e.g., quantity, size, and crystalline structure) and unconfined compressive strength (UCS) using different treatment time and chemical concentration in the biotreatment. Two chemical concentrations (0.5 and 1.0 M) and three different treatment times (2, 4, and 8 cycles) were studied. The effect of chemical concentrations on the treatment was also examined by making the total amount of chemicals injected to be the same, but using different times of treatment and chemical concentrations (8 cycles for 0.50 M and 4 cycles for 1.00 M). The UCS and CCC were measured and scanning electron microscopy (SEM) analysis was carried out. The SEM images revealed that the sizes of calcium carbonate crystals increased with an increase in chemical concentrations. The UCS values resulting from the treatments using low concentration were slightly greater than those from the treatments using high concentration, given the CCC to be more or less the same. This trend can be attributed to the size of the precipitated crystals, in which the cementation efficiency increases as the crystal size decreases, for a given CCC. Furthermore, in the high concentration treatment, two mineral types of calcium carbonate were precipitated, namely, calcite and amorphous calcium carbonate (ACC). As the crystal shape and morphology of ACC differ from those of calcite, the bonding provided by ACC can be weaker than that provided by calcite. As a result, the conditions of calcium carbonate were affected by test key factors and eventually, contributed to the UCS values.

Effects of Zinc, Phosphorus and Iron on the Cadmium Uptake and Accumulation by Hydroponically Grown Tomato (수경 재배된 도마도(Lycopersicum esculentum Mill)에 의한 Cd의 흡수, 축적과 이에 미치는 Zn, Fe 및 인산의 효과)

  • Kim, M.J.;Motto, H.L.
    • Applied Biological Chemistry
    • /
    • v.21 no.1
    • /
    • pp.40-50
    • /
    • 1978
  • Effects of Zn, P and Fe on Cd uptake and accumulations by tomato (Lycopersicum esculentum Mill) and also their interactions on the uptake of Zn, Fe, Mn, P and Cd were investigated using batch type solution culture technique. Experiment 1 was a factorial scheme with 3 levels of Zn (0, 0.5, 2.5 ppm) and 3 levels of Cd (0, 0.2, 1.0 ppm). At 1.0 ppm Cd, significant yield reduction of dry matter and visual toxicity symptoms (yellowing and necrosis) of Cd was observed for all zinc levels. At this Cd level, increasing Zn treatment from 0 to 2.5 ppm increased Cd concentration from 199 to 235 ppm in leaves and from 124 to 145 ppm in stems. Similarly, Cd treatment did not suppress Zn uptake in leaves, and rather significantly increased in stems. Fe concentrations in leaves and stems were significantly reduced due to Cd treatment while Mn were increased by both Zn and Cd treatment. The results of experiment 2 with 3 levels of P (0.5, 2.0, 4.0m Mol) and 3 levels of Cd (0, 1.0, 2.0 ppm) in a factorial scheme also showed a growth reduction and visual toxic symptons from 1.0 ppm Cd level. Increasing P treatment tend to increase Cd concentrations in leaves and stems although it was not statistically significant. Increasing P concentration due to Cd treatment could be the 'concentration' effect as a result of reduced growth, while there was significant decrease in Fe concentration due to Cd treatment in spite of possible 'concentration' effect. Mn concentration was increased at 1.0 ppm Cd level and then dropped at 2.0 ppm Cd level. Zu concentration in leaves and stems showed significant increase as Cd treatment increased as observed in experiment 1. Experiment 3 had 3 levels of Fe (0.5, 1.0, 2.0 ppm) and 3 levels of Cd (0, 0.8, 1.6 ppm) treatments in a factorial design. Significant growth reduction and visual toxic symptoms as observed in experiment 1 and 2 were also observed from 0.8 ppm Cd level. Increasing Fe treatment obviously alleviated toxic symptoms, improved growth and significantly increased dry matter yield. At 0.8 ppm Cd treatment level, increasing Fe treatment from 0.5 to 2.0 ppm significantly decreased Cd concentration from 141 to 92 ppm in leaves and from 101 to 46 ppm in stems. At 1.6 ppm Cd treatment level the decrease was from 224 to 167 ppm in leaves and from 124 to 109 ppm in stems. As in the case of experiment 1 and 2, Fe concentration in leaves and stems were reduced as Cd treatment increased to 1.6 ppm at 0.5 and 1. 0 Fe treatment levels, whereas at 2.0 ppm Fe level, Cd treatment increased Fe concentration in leaves and stems showing significant interactions of Fe and Cd on Fe uptake. Cd effect on Zn and Mn showed similar results to experiment 1 and 2 and Fe treatments reduced Zn and Mn concentrations in plant tissue. The results of 3 experiments show that P and Zn did not manifest suppressive effect on Cd uptake, Fe significantly demonstrated it. Fe also alleviated Cd toxicity symptoms significantly in terms of visual symptoms and dry matter yield. Visual toxicity symptoms were definitely related to Fe status in plant tissue as well as possible physiological effect of Cd itself, and the results suggest that Fe requirement for normal growth increase as Cd element is present in plant tissue. Zn accumulated more in stems than in leaves whereas Cd, Fe and Mn showed the opposite trend in all experiments.

  • PDF

Yeast Culture and Vitamin E Supplementation Alleviates Heat Stress in Dairy Goats

  • Wang, Lizhi;Wang, Zhisheng;Zou, Huawei;Peng, Quanhui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.6
    • /
    • pp.814-822
    • /
    • 2016
  • This study was conducted to determine and compare the effects of yeast yeast culture (YC) and vitamin E (VE) supplementation on endotoxin absorption and antioxidant status in lactating dairy goats suffering from heat stress (HS). Three first lactation Saanen dairy goats (body weight $30{\pm}1.5kg$) were surgically fitted with indwelling catheters in the portal vein, mesenteric vein and carotid artery, and were randomly assigned to a $3{\times}3$ Latin square design. Dietary treatments were the basal diet, and the basal diet supplemented with either 100 IU VE or 30 g YC. Goats were kept in temperature and humidity-controlled room at $35^{\circ}C$ from 8:00 to 20:00 and at $24^{\circ}C$ from 20:00 till the next morning at 8:00. The relative humidity was kept at 55%. HS increased dairy goats' rectum temperature and respiration frequency (p<0.01). HS reduced plasma flux rate of milk goats (p<0.01), but the plasma flux rate increased when the animal was under the conditions of the thermo-neutral period (p<0.01). The VE supplementation lowered dairy goats' rectum temperature during thermo-neutral period (p<0.01). Meanwhile, no significant differences were observed between the control and YC treatment in rectum temperature and respiration frequency (p>0.05). Dietary supplementation of VE and YC reduced heat stressed dairy goats' endotoxin concentration of the carotid artery and portal vein (p<0.01). However, the endotoxin concentration of the YC treatment was higher than that of the VE treatment (p<0.01). Both VE and YC supplementation decreased heat stressed dairy goats' absorption of endotoxin in portal vein (p<0.01). The endotoxin absorption of YC treatment was higher than the VE treatment (p<0.01). The addition of VE and YC decreased dairy goats' superoxide dismutase (SOD) concentration during HS and the whole experiment period (p<0.01). The addition of VE lowered SOD concentration during thermo-neutral period (p<0.01). Likewise, the addition of VE and YC lowered dairy goats' malonaldehyde (MDA) concentration during HS and the whole experimental period, and the MDA concentration in the VE treatment was lower than the YC treatment (p<0.05). The addition of VE decreased MDA concentration during thermo-neutral period. On the contrast, the addition of VE increased dairy goats total antioxidant potential (TAP) concentration during HS, thermo-neutral and the whole experimental period (p<0.01). The addition of YC increased TAP concentration only during HS period (p<0.01). It is concluded that both VE and YC are useful in alleviating HS of dairy goats by weakening endotoxin absorption and promoting antioxidant capacity. Compared with YC, VE is much more powerful in easing dairy goats HS.

A Study on the Anaerobic Treatment of the Phenol-bearing Wastewater with two Sludge Blanket-Packed Bed Reactors in Series (2단의 슬러지-고정상 반응기에서 페놀 함유 폐수의 혐시성 처리에 관한 연구)

  • 정종식;안재동;박동일;신승훈;장인용
    • Journal of Environmental Health Sciences
    • /
    • v.21 no.4
    • /
    • pp.1-9
    • /
    • 1995
  • This study was carried to investigate the biodegradability of phenol in the wastewater with the two sludge blanket-packed bed reactor in series. Each reactor had a dimension of 0.09 m i.d. and 1.5 m height and consisted of two regions. The lower region was a sludge blanket of 0.5 m height and the upper region was a packed-bed of 1 m height. The packed bed region was charged with ceramic raschig rings of 10 mm i.d., 15 mm o.d. and 20 mm length. The reactors were operated at 35$\circ$C and the hydraulic retention time(HRT) was maintained 24 hours. The synthetic wastewater composed of glucose and phenol as major components was fed into the reactor in a continuous mode with incereasing phenol concentration. In addition, the nutrient trace metals($Na^+, Mg^{2+}, Ca^{2+}, PO_4^{3-}, NH_4^+, Co^{2+}, Fe^{2+}$ etc.) were added for growing anaerobes. The phenol concentration of the effluent, the overall gas production, the composition of product gas, the efficiency of COD reduction and the duration of acclimation period were measured to determine the performance of the anaerobic wastewater treatment system as the phenol concentration of the influent was increased from 600 to 2400 mg//l. Successfully stable biodegradation of phenol could be achieved with the anaerobic treatment system from 600 to 1, 800 mg/l of the influent phenol concentration. The upper level of influent phenol loading was high enough to meet most of the practical requirement. The duration of acclimation increased with the phenol loading. At steady state of the influent phenol concentration of 1800 mg/l, the treatment performance indicated the phenol reduction efficiency of 99%, the COD reduction efficiency of 99% and the gas production rate of 37 l/day. At the influent phenol concentration of 2400 mg/l, however, the operation of the treatment system was noted unstable. While the concentration of methane in biogas decreased with increasing the influent phenol loading, the carbon dioxide was increased. However, the concentration of hydrogen was varied negligibly. The concentration of methane was high enough to be used as a fuel. As a result, it is suggested that anaerobic phenol wastewater treament was economical in the sense of energy recovery and wastewater treatment.

  • PDF

A Study on the Behavior of Residual Fluoride in Water Treatment Process (정수처리과정(淨水處理過程)에서의 잔류불소(殘留弗素)이온 거동(擧動)에 관한 연구(硏究))

  • Lee, Taek-Soon;Moon, Byung-Hyun;Seo, Gyu-Tae;Jin, Hong-Sik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.2
    • /
    • pp.164-173
    • /
    • 2000
  • Fluoridation of drinking water to a level of about 0.8mg/l (below 1.5mg/l) for reducing the incidence of tooth decay is recommended. However, concerns about potential problems of unknown effects and overdosing hinders the fluoridation. This study describes the work performed to obtain information on the behavior of fluoride under various conditions in the process of water fluoridation. Effects of water treatment chemicals, water treatment unit, and water distribution on water fluoridation were investigated at both lab and an actual water treatment plant. Residual fluoride concentration was not affected by lime and chlorine dosage up to 20mg/l. Flocculation with PAC slightly decreased the residual fluoride concentration as PAC dosage increased. Average fluoride concentration of 0.87mg/l at an intake basin was decreased to 0.83mg/l by sedimentation, 0.81mg/l by dual media(sand+anthracite) filtration, and 0.79mg/l by granular activated carbon filtration in the water treatment plant.

  • PDF