• 제목/요약/키워드: Treatment barrier

Search Result 651, Processing Time 0.026 seconds

The Effects of the Fruits of Foeniculum vulgare on Skin Barrier Function and Hyaluronic Acid Production in HaCaT Keratinocytes (HaCaT 세포에서 회향 열매의 피부장벽기능과 hyaluronic acid 생성에 미치는 영향)

  • Yu, Hak Yin;Yang, In Jun;Lincha, V.R;Park, In Sik;Lee, Dong-Ung;Shin, Heung Mook
    • Journal of Life Science
    • /
    • v.25 no.8
    • /
    • pp.880-888
    • /
    • 2015
  • Foeniculum vulgare (FV) has long been used in traditional medicine for the treatment of inflammatory diseases. In addition, it is usually known as an important medicinal and aromatic plant widely used as a carminative, digestive, lactogogue, and diuretic, and for treating respiratory and gastrointestinal disorders. The skin barrier protects against the invasion of pathogens, fends off chemical and physical assaults, and protects against extensive water loss. In this study, the effects of solvent-fractionated FV fruits on strengthening the skin barrier and maintaining moisture, as well as their antifungal activity, were investigated in human keratinocyte (HaCaT) cells. The expression of involucrin, loricrin, filaggrin, hyaluronic acid synthase, human β defensin, and cathelicidin genes and proteins was measured by reverse transcription polymerase chain reaction (RT-PCR) and western blotting. The production of hyaluronic acid was determined by enzyme-linked immunosorbent assay (ELISA). The butanol fraction increased the expression of involucrin and filaggrin. Both the ethyl acetate and the butanol fractions increased hyaluronic acid production by promoting the expression of hyaluronic acid synthase-1. Although the antimicrobial peptides were increased by FV crude extract and its fractions, the samples did not show a significant effect compared to the normal group. These results suggest that the butanol fraction of FV could be very useful in cosmetics for the treatment of dermatological diseases.

Novel Sporichthyaceae Bacterium Strain K-07 Skin Barrier, Moisturizing and Anti-inflammatory Activity (신규 Sporichthyaceae Bacterium Strain K-07 배양액의 피부장벽, 보습 및 항염증 활성)

  • Lee, Dong-Geol;Kim, Minji;Kang, Seunghyun;Kim, Youn-Joon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.43 no.2
    • /
    • pp.137-147
    • /
    • 2017
  • The human skin is an ecosystem that provides habitat to various microorganisms. These comprise the skin microbiome and provide numerous benefits in addition to maintaining a symbiotic relation with the host. Various metabolites generated by the skin microbiome exert beneficial effects such as strengthening the skin barrier, and anti-aging and anti-inflammatory functions. In this study, we isolated a novel bacterium, designated Sporichthyacae strain K-07, from the human skin. Analysis of 16S rRNA gene sequences showed that the newly found bacterium shares 93.4% homology with the genus Sporichthya, thus corroborating the discovery of a novel genus. We further analyzed the effect of the novel strain in vitro, by treating HaCaT cells with bacterial metabolite products. Treatment resulted in changes in the mRNA expression levels of filaggrin, claudin1, claudin4, SMase, CERS3, HAS3, aquaporin3, IL-6, TNF-${\alpha}$, TSLP, and TARC. Specifically, the levels of filaggrin, claudin1, claudin4, SMase, CERS3, HAS3, and aquaporin3 were higher in strain K-07 metabolite product-treated cells than in control cells. These results showed that metabolite products of the novel strain K-07 enhanced the skin barrier and exert anti-inflammatory effects. Therefore, these metabolite products could be potentially used for treatment of skin conditions.

Clinical Study on Therapeutic Effects of Biodegradable membrane $Biomesh^{(R)}$ and autogenous bone grafts in infrabony defects (골내치주낭에 $Biomesh^{(R)}$ 차단막과 자가골이식의 치료효과에 대한 연구)

  • Suh, Jong-Jin;Chung, Ye-Jin;Choi, Byeong-Gap;Choi, Seong-Ho;Cho, Kyoo-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.4
    • /
    • pp.779-793
    • /
    • 2000
  • The ultimate goal of periodontal disease therapy is to promote the regeneration of lost periodontal tissue, there has been many attempts to develop a method to achieve this goal, but none of them was completely successful. This study was designed to compare the effects of treatment using resorbable barrier membrane($Biomesh^{?}$) in combination with autogenous bone graft material with control treated by only modified Widman flap. 22 infrabony defecs from 10 patients with chronic periodontitis were used for this study, 10 sites of them were treated with resorbable barrier membrane and autogenous bone graft material as experimental group and 12 site were treated by only modified Widman flap as control group. Clinical parameters including probing depth, gingival recession, bone probing depth and loss of attachment were recorded at 6-8 months later, and the significance of the changes was statistically analyzed. The results are as follows : 1. Probing depth of the two group was reduced with statistically significance(P<0.05), but this changes were not different between the two experiment, control group with statistically significance. 2. Gingival recession showed statistically significant increase in control group(P<0.05), but not in experimental group, and initial values of the two group were in statistically significant difference(P<0.05). 3. Bone probing depth showed statistically significant decrease in experimental group(P<0.05), but not in control group, and this changes were different between the two experiment, control group with statistically significance(P<0.05). 4. Loss of attachment showed statistically significant decrease in experimental group(P<0.05), but not in control group, and this changes were different between the two experiment, control group with statistically significance(P<0.05) On the basis of these results, treatment using resorbable barrier membrane in combination with autogenous bone graft material improve the probing depth, bone probing depth and loss of attachment in infrabony defects.

  • PDF

Development of a Cosmetic Ingredient Containing DHA Derivatives for Anti-inflammation, Anti-wrinkle, and Improvement of Skin Barrier Function (DHA 유도체를 이용한 항염, 항노화, 피부장벽 강화용 화장품 원료의 개발)

  • Lee, Miyoung;Lee, Gil-Yong;Suh, Jinyoung;Lee, Kyung min;Lee, Woojung;Cho, Hee Won;Yi, Jong-Jae;Seo, Jeong-Woo;Choi, Heonsik
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.1
    • /
    • pp.65-73
    • /
    • 2021
  • It is very important to control the inflammation of the skin because it can develop into diseases such as atopy as well as scarring and aging. In this work, we recently identified the in vitro synthesis of specialized pro-resolving mediators (SPMs) known to control inflammation in the human body and the applicability of cosmetics. Using recombinant protein of lipoxygenase from Glycine max, we succeeded to prepare mixtures of mono- or di-hydroxy DHA named as S-SPMs and used them for in vitro efficacy test. To investigate anti-inflammatory effect of S-SPMs, mRNA level of TNF-α and IL-6 were analyzed. Under UVB exposed condition, expression of both were decreased by S-SPMs treatment. And we observed reduced production of nitric oxide (NO) by S-SPMs application under the condition with diesel particulate matter (DPM). At the same experimental condition, malondialdehyde (MDA) production was decreased by S-SPMs, indicating the inhibitory effect of S-SPMs in lipid peroxidation. In addition, S-SPMs treatment resulted in reduction of matrix metalloproteinases-1 (MMP-1) expression and elevation of procollagen type I synthesis. Together with this, mRNA level of filaggrin and loricrin were increased by S-SPMs, indicating enhancement of skin barrier function. These results demonstrate that S-SPMs is a good candidate to develop as a cosmetic ingredient for anti-inflammation, anti-wrinkle, and improvement of skin barrier function.

Removal of Rhodamine B Dye Using a Water Plasma Process (수중 플라즈마 공정을 이용한 Rhodamine B 염료의 제거)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.37 no.3
    • /
    • pp.218-225
    • /
    • 2011
  • Objectives: In this paper, a dielectric barrier discharge (DBD) plasma reactor was investigated for degrading the dye Rhodamine B (RhB) in aqueous solutions. Methods: The DBD plasma reactor system in this study consisted of a plasma component [titanium discharge (inner), ground (outer) electrode and quartz dielectric tube], power source, and gas supply. The effects of various parameters such as first voltage (input power), gas flow rate, second voltage (output power), conductivity and pH were investigated. Results: Experimental results showed that a 99% aqueous solution of 20 mg/l Rhodamine B is decolorized following an eleven minute plasma treatment. When comparing the performance of electrolysis and plasma treatment, the RhB degradation of the plasma process was higher that of the electrolysis. The optimum first voltage and air flow rate were 160 V (voltage of trans is 15 kV) and 3 l/min, respectively. With increased second voltage (4 kV to 15 kV), RhB degradation was increased. The higher the pH and the lower conductivity, the more Rhodamine B degradation was observed. Conclusions: OH radical generation of dielectric plasma process was identified by degradation of N, N-dimethyl-4-nitrosoaniline (RNO, indicator of OH radical generation). It was observed that the effect of UV light, which was generated as streamer discharge, on Rhodamine B degradation was not high. Rhodamine B removal was influenced by real second voltage regardless of initial first and second voltage. The effects of pH and conductivity were not high on the Rhodamine B degradation.

Effect of Surface Modification of the Porous Stainless Steel Support on Hydrogen Perm-selectivity of the Pd-Ag Alloy Hydrogen Separation Membranes (다공성 스테인리스 강 지지체의 표면개질에 따른 팔라듐-은 합금 수소 분리막의 수소 투과 선택도의 변화)

  • Kim, Nak-Cheon;Kim, Se-Hong;Lee, Jin-Beum;Kim, Hyun-Hee;Yang, Ji-Hye;Kim, Dong-Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.3
    • /
    • pp.286-300
    • /
    • 2016
  • Pd-Ag alloy membranes have attracted a great deal of attention for their use in hydrogen purification and separation due to their high theoretical permeability, infinite selectivity and chemical compatibility with hydro-carbon containing gas streams. For commercial application, Pd-based membranes for hydrogen purification and separation need not only a high perm-selectivity but also a stable long-term durability. However, it has been difficult to fabricate thin, dense Pd-Ag alloy membranes on a porous stainless steel metal support with surface pores free and a stable diffusion barrier for preventing metallic diffusion from the porous stainless steel support. In this study, thin Pd-Ag alloy membranes were prepared by advanced Pd/Ag/Pd/Ag/Pd multi-layer sputter deposition on the modified porous stainless steel support using rough polishing/$ZrO_2$ powder filling and micro-polishing surface treatment, and following Ag up-filling heat treatment. Because the modified Pd-Ag alloy membranes using rough polishing/$ZrO_2$ powder filling method demonstrate high hydrogen permeability as well as diffusion barrier efficiency, it leads to the performance improvement in hydrogen perm-selectivity. Our membranes, therefore, are expected to be applicable to industrial fields for hydrogen purification and separation owing to enhanced functionality, durability and metal support/Pd alloy film integration.

Mucopolysaccharidosis Type III: Overview and Future Therapeutic Approaches

  • Kwak, Min Jung
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Mucopolysaccharidosis (MPS) type III, or Sanfilippo syndrome is a rare autosomal recessive lysosomal storage disorder. It is caused by a deficiency of one of four enzymes involved in the degradation of the glycosaminoglycan (GAG) heparan sulfate. The resultant cellular accumulation of heparan sulfate causes various clinical manifestations. MPS III is divided into four subtypes depending on the deficient enzyme: MPS IIIA, MPS IIIB, MPS IIIC and MPS IIID. All the subtypes show similar clinical features and are characterized by progressive degeneration of the central nervous system (CNS). Main purpose of the treatment for MPS III is to prevent neurologic deterioration. However, conventional enzyme replacement therapy has a limitation due to inability to cross the blood-brain barrier. Several experimental treatment options for MPS III are being developed.

Enhanced hole injection by oxygen plasma treatment on Au electrode for bottom-contact pentacene organic thin-film transistors

  • Kim, Woong-Kwon;Hong, Ki-Hyon;Kim, Soo-Young;Lee, Jong-Lam
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.74-77
    • /
    • 2006
  • Thin $AuO_x$ layer was formed by $O_2$ plasma treatment on Au electrode. The surface work function of plasma treatment showed higher by 0.5 eV than that of bare Au, reducing the hole injection barrier at the Au/pentacene interface. Using $O_2$ plasma-treated Au source-drain electrodes, the field-effect mobility of bottom-contact pentacene-OTFT was increased from 0.05 to 0.1 $cm^2/Vs$.

  • PDF

Brain metastasis in human epidermal growth factor receptor 2-positive breast cancer: from biology to treatment

  • Koo, Taeryool;Kim, In Ah
    • Radiation Oncology Journal
    • /
    • v.34 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • Overexpression of human epidermal growth factor receptor 2 (HER2) is found in about 20% of breast cancer patients. With treatment using trastuzumab, an anti-HER2 monoclonal antibody, systemic control is improved. Nonetheless, the incidence of brain metastasis does not be improved, rather seems to be increased in HER2-positive breast cancer. The mainstay treatment for brain metastases is radiotherapy. According to the number of metastatic lesions and performance status of patients, radiosurgery or whole brain radiotherapy can be performed. The concurrent use of a radiosensitizer further improves intracranial control. Due to its large molecular weight, trastuzumab has a limited ability to cross the blood-brain barrier. However, small tyrosine kinase inhibitors such as lapatinib, has been noted to be a promising agent that can be used as a radiosensitizer to affect HER2-positive breast cancer. This review will outline general management of brain metastases and will focus on preclinical findings regarding the radiosensitizing effect of small molecule HER2 targeting agents.

Innovative Therapeutic Approaches for Mucopolysaccharidosis III

  • Sohn, Young Bae
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • v.4 no.2
    • /
    • pp.37-41
    • /
    • 2018
  • Mucopolysaccharidosis III (MPS III, Sanfilippo syndrome) is a rare autosomal recessive disease caused by a deficiency of one of four enzymes involved in the degradation of glycosaminoglycan (GAG). The resultant cellular accumulation of GAG causes various clinical manifestations. MPS III is divided into four subtypes depending on the deficient enzyme. All the subtypes show similar clinical features and are characterized by progressive degeneration of the central nervous system. A number of genetic and biochemical diagnostic methods have been developed. However, there is no effective therapy available for any form of MPS III, with treatment currently limited to clinical management of neurological symptoms. Main purpose of the treatment for MPS III is to prevent neurologic deterioration. Because conventional intravenous enzyme replacement therapy (ERT) has a limitation due to inability to cross the blood-brain barrier, several innovative therapeutic approaches for MPS III are being developed. This review covers the currently developing new therapeutic options for MPS III including high dose ERT, substrate reduction therapy, intrathecal or intraventricular ERT, fusion protein delivery using bioengineering technology, and gene therapy.