Browse > Article
http://dx.doi.org/10.15230/SCSK.2017.43.2.137

Novel Sporichthyaceae Bacterium Strain K-07 Skin Barrier, Moisturizing and Anti-inflammatory Activity  

Lee, Dong-Geol (Pangyo inno valley E)
Kim, Minji (Pangyo inno valley E)
Kang, Seunghyun (Pangyo inno valley E)
Kim, Youn-Joon (Pangyo inno valley E)
Publication Information
Journal of the Society of Cosmetic Scientists of Korea / v.43, no.2, 2017 , pp. 137-147 More about this Journal
Abstract
The human skin is an ecosystem that provides habitat to various microorganisms. These comprise the skin microbiome and provide numerous benefits in addition to maintaining a symbiotic relation with the host. Various metabolites generated by the skin microbiome exert beneficial effects such as strengthening the skin barrier, and anti-aging and anti-inflammatory functions. In this study, we isolated a novel bacterium, designated Sporichthyacae strain K-07, from the human skin. Analysis of 16S rRNA gene sequences showed that the newly found bacterium shares 93.4% homology with the genus Sporichthya, thus corroborating the discovery of a novel genus. We further analyzed the effect of the novel strain in vitro, by treating HaCaT cells with bacterial metabolite products. Treatment resulted in changes in the mRNA expression levels of filaggrin, claudin1, claudin4, SMase, CERS3, HAS3, aquaporin3, IL-6, TNF-${\alpha}$, TSLP, and TARC. Specifically, the levels of filaggrin, claudin1, claudin4, SMase, CERS3, HAS3, and aquaporin3 were higher in strain K-07 metabolite product-treated cells than in control cells. These results showed that metabolite products of the novel strain K-07 enhanced the skin barrier and exert anti-inflammatory effects. Therefore, these metabolite products could be potentially used for treatment of skin conditions.
Keywords
skin microbiome; cosmetic; Sporichthyaceae; symbiotic bacteria; skin barrier;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Iwase, Y. Uehara, H. Shinji, A. Tajima, H. Seo, K. Takada, T. Agata, and Y. Mizunoe, Staphylococcus epidermidis esp inhibits Staphylococcus aureus biofilm formation and nasal colonization, Nature, 465, 346 (2010).   DOI
2 M. Kimura, Preponderance of synonymous changes as evidence for the neutral theory of molecular evolution, Nature, 267, 275 (1977).   DOI
3 S. Kumar, K. Tamura, and M. Nei, MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment, Brief. Bioinform., 5, 150 (2004).   DOI
4 S. V. Dhotre, G. T. Mehetre, M. S. Dharne, N. M. Suryawanshi, and B. S. Nagoba, Isolation of Streptococcus tigurinus - a novel member of Streptococcus mitis group from a case of periodontitis. FEMS Microbiol Lett. 357, 131 (2014).
5 E. B. Brandt and U. Sivaprasad, Th2 Cytokines and Atopic Dermatitis, J. Clin. Cell Immunol., 2, 110 (2011).
6 S. R. Wilson, L. Thé, L. M. Batia, K. Beattie, G. E. Katibah, S. P. McClain, M. Pellegrino, D. M. Estandian, and D. M. Bautista, The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch, Cell, 155, 285 (2013).   DOI
7 H. M. Hamer, D. M. A. E. Jonkers, K. Venema, S. A. L. W. Vanhoutvin, F. J. Troost, and R. J. Brummer, Review article: the role of butyrate on colonic function. AP&T, 27, 104 (2008).
8 S. H. Kaufmann, The contribution of immunology to the rational design of novel antibacterial vaccines. Nature Reviews Microbiology, 5, 491 (2007).   DOI
9 K. H. Hänel, C. Cornelissen, B. Lüscher, and J. M. Baron, Cytokines and the Skin Barrier, Int. J. Mol. Sci., 14, 6720 (2013).   DOI
10 K. Chiller, B. A. Selkin, and G. J. Murakawa, Skin microflora and bacterial infections of the skin, J. Investig. Dermatol. Symp. Proc., 6, 170 (2001).   DOI
11 D. N. Fredricks, Microbial ecology of human skin in health and disease, J. Investig. Dermatol. Symp. Proc., 6, 167 (2001).   DOI
12 R. R. Roth and W. D. James, Microbial ecology of the skin, Annu. Rev. Microbiol., 42, 441 (1988).   DOI
13 W. C. Noble, Skin microbiology: coming of age, J. Med. Microbiol., 17, 1 (1984).   DOI
14 R. R. Roth and W. D. James, Microbiology of the skin: resident flora, ecology, infection, J. Am. Acad. Dermatol., 20, 367 (1989).   DOI
15 A. Martin, M. A. Saathoff, F. Kuhn, H. Max, L. Terstegen, and A. Natsch, A functional ABCC11 allele is essential in the biochemical formation of human axillary odor, J. Invest. Dermatol., 130, 529 (2010).   DOI
16 A. L. Cogen, V. Nizet, and R. L. Gallo, Skin microbiota: a source of disease or defence?, Br. J. Dermatol., 158, 442 (2008).   DOI
17 C. Callewaert, F. M. Kerckhof, M. S. Granitsioti, M. Van Gele, T. Van de Wiele, and N. Boon, Characterization of Staphylococcus and Corynebacterium clusters in the human axillary region, PLoS One, 8, e70538 (2013)   DOI
18 E. A. Grice and J. A. Segre, The skin microbiome, Nat. Rev. Microbiol., 9, 244 (2011).   DOI
19 A. L. Cogen, K. Yamasaki, K. M. Sanchez, R. A. Dorschner, Y. Lai, D. T. MacLeod, J. W. Torpey, M. Otto, V. Nizet, J. E. Kim, and R. L. Gallo, Selective antimicrobial action is provided by phenol-soluble modulins derived from Staphylococcus epidermidis, a normal resident of the skin, J. Invest. Dermatol., 130, 192 (2010).   DOI
20 I. Wanke, H. Steffen, C. Christ, B. Krismer, F. Gotz, A. Peschel, M. Schaller, and B. Schittek, Skin commensals amplify the innate immune response to pathogens by activation of distinct signaling pathways, J. Invest. Dermatol., 131, 382 (2011).   DOI
21 S. Parvez, K. A. Malik, S. A. Kang, and H. Y. Kim, Probiotics and their fermented food products are beneficial for health, J. Appl. Microbiol., 100, 1171 (2006).   DOI
22 P. M. Elias, The skin barrier as an innate immune element, Seminars in Immunopathology, 29, 3 (2007).   DOI
23 D. N. Fredricks, Microbial ecology of human skin in health and disease, J. Investig. Dermatol. Symp. Proc., 6, 167 (2001).   DOI