• Title/Summary/Keyword: Treatment barrier

Search Result 648, Processing Time 0.027 seconds

Electron Transport of Low Transmission Barrier between Ferromagnet and Two-Dimensional Electron Gas (2DEG)

  • Koo, H.C.;Yi, Hyun-Jung;Ko, J.B.;Song, J.D.;Chang, Joon-Yeon;Han, S.H.
    • Journal of Magnetics
    • /
    • v.10 no.2
    • /
    • pp.66-70
    • /
    • 2005
  • The junction properties between the ferromagnet (FM) and two-dimensional electron gas (2DEG) system are crucial to develop spin electronic devices. Two types of 2DEG layer, InAs and GaAs channel heterostructures, are fabricated to compare the junction properties of the two systems. InAs-based 2DEG layer with low trans-mission barrier contacts FM and shows ohmic behavior. GaAs-based 2DEG layer with $Al_2O_3$ tunneling layer is also prepared. During heat treatment at the furnace, arsenic gas was evaporated and top AlAs layer was converted to aluminum oxide layer. This new method of forming spin injection barrier on 2DEG system is very efficient to obtain tunneling behavior. In the potentiometric measurement, spin-orbit coupling of 2DEG layer is observed in the interface between FM and InAs channel 2DEG layers, which proves the efficient junction property of spin injection barrier.

Evaluation of calcium sulphate barrier to collagen membrane in intrabony defects

  • Budhiraja, Shilpa;Bhavsar, Neeta;Kumar, Santosh;Desai, Khushboo;Duseja, Sareen
    • Journal of Periodontal and Implant Science
    • /
    • v.42 no.6
    • /
    • pp.237-242
    • /
    • 2012
  • Purpose: The aim of this study was to clinically and radiographically evaluate and compare treatment of intrabony defects with the use of decalcified freeze-dried bone allograft in combination with a calcium sulphate barrier to collagen membrane. Methods: Twelve patients having chronic periodontal disease aged 20 to 50 years and with a probing depth >6 mm were selected. Classification of patient defects into experimental and control groups was made randomly. In the test group, a calcium sulphate barrier membrane, and in control group, a collagen membrane, was used in conjunction with decalcified freeze-dried bone graft in both sides. Ancillary parameters as well as soft tissue parameters along with radiographs were taken at baseline and after 6 months of surgery. Parameters assessed were plaque index, modified gingival index, probing depth, relative attachment level, and location of the gingival margin. A Student's t-test was done for intragroup and a paired t-test for intergroup analysis. Results: Intragroup analysis revealed statistically significant improvement in all the ancillary parameters and soft tissue parameters with no statistically significant difference in intergroup analysis. Conclusions: The study concluded that a calcium sulphate barrier was comparable to collagen membrane in achieving clinical benefits and hence it can be used as an economical alternative to collagen membrane.

Effects of Heat-treatment Condition on the Characteristics of Sintering and Electrical Behaviors of Two NASICON Compounds (열처리조건이 두 NASICON 조성의 소결 및 전기적특성에 미치는 영향)

  • 강희복;조남희;김윤호
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.7
    • /
    • pp.685-692
    • /
    • 1997
  • Effects of sintering temperature and time on the phase formation, the characteristics of sintering and electrical behaviors of NASICON compounds with Na3Zr2Si2PO12 and Na3.2Zr1.3Si2.2P0.8O10.5 compositions synthesized by solid state reaction were investigated. Maximum relative densities of 96% and 91% were obtained for Na3Zr2Si2PO12 and Na3.2Zr1.3Si2.2P0.8O10.5 compounds, respectively. Complex impedance analysis in a frequency range below 4 MHz was performed to measure the ionic conductivity and migration barrier height of the compounds at RT-30$0^{\circ}C$. The maximum ionic conductivity and the minimum migration barrier height were 0.45 ohm-1cm-1 and 0.07 eV, respectively. The migration barrier height of the high temperature form (space group : R3c) is about 30-40% of that of the low temperature form (space group : C2/c) in two NASICON compounds. Ionic conductivity increases with increasing sinterability, and the presence of glass phase in Na3.2Zr1.3Si2.2P0.8O10.5 compounds lowers significantly ionic conductivity at temperatures above 14$0^{\circ}C$.

  • PDF

Pathophysiology and protective approaches of gut injury in critical illness

  • Jung, Chang Yeon;Bae, Jung Min
    • Journal of Yeungnam Medical Science
    • /
    • v.38 no.1
    • /
    • pp.27-33
    • /
    • 2021
  • The gut is a complex organ that has played an important role in digestion, absorption, endocrine functions, and immunity. The gut mucosal barriers consist of the immunologic barrier and nonimmunologic barrier. During critical illnesses, the gut is susceptible to injury due to the induction of intestinal hyperpermeability. Gut hyperpermeability and barrier dysfunction may lead to systemic inflammatory response syndrome. Additionally, gut microbiota are altered during critical illnesses. The etiology of such microbiome alterations in critical illnesses is multifactorial. The interaction or systemic host defense modulation between distant organs and the gut microbiome is increasingly studied in disease research. No treatment modality exists to significantly enhance the gut epithelial integrity, permeability, or mucus layer in critically ill patients. However, multiple helpful approaches including clinical and preclinical strategies exist. Enteral nutrition is associated with an increased mucosal barrier in animal and human studies. The trophic effects of enteral nutrition might help to maintain the intestinal physiology, prevent atrophy of gut villi, reduce intestinal permeability, and protect against ischemia-reperfusion injury. The microbiome approach such as the use of probiotics, fecal microbial transplantation, and selective decontamination of the digestive tract has been suggested. However, its evidence does not have a high quality. To promote rapid hypertrophy of the small bowel, various factors have been reported, including the epidermal growth factor, membrane permeant inhibitor of myosin light chain kinase, mucus surrogate, pharmacologic vagus nerve agonist, immune-enhancing diet, and glucagon-like peptide-2 as preclinical strategies. However, the evidence remains unclear.

Etching of the PDP barrier rib material using laser beam (레이저빔에 의한 PDP 격벽 재료의 식각)

  • Ahn, Min-Young;Lee, Kyoung-Cheol;Lee, Hong-Kyu;Lee, Sang-Don;Lee, Cheon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.6
    • /
    • pp.526-532
    • /
    • 2000
  • The paste on the glass or fabrication of the PDP(Plasma Display Panel) barrier rib was selectively etched using focused A $r_{+}$ laser(λ=514 nm) and Nd:YAG(λ=532, 266 nm) laser irradiation. The depth of the etched grooves increase with increasing a laser fluence and decreasing a laser beam scan speed. Using second harmonic of Nd:YAG laser(532 nm) the etching threshold laser fluence was 6.5 mJ/c $m^2$ for the sample of PDP barrier rib. The thickness of 180 ${\mu}{\textrm}{m}$ of the sample on the glass was clearly removed without any damage on the glass substrate by fluence of 19.5J/c $m^2$beam scan speed of 20${\mu}{\textrm}{m}$ /s. In order to increase the etch rate of the barrier rib material barrier rib samples heated by a resistive heater during laser irradiation. The heated sample has many defects and becomes to be fragile. This imperfection of the structure compared to the sample without heat treatment allows the effective etching by the focused laser beam. The etch rates were 65${\mu}{\textrm}{m}$/s and 270 ${\mu}{\textrm}{m}$/s at room temperature and 20$0^{\circ}C$, respectively.y.

  • PDF

Thermal Treatment Effects of Staggered Tunnel Barrier(Si3N4/Ta2O5) for Non Volatile Memory Applications

  • Lee, Dong-Hyeon;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.159-160
    • /
    • 2012
  • 지난 30년 동안 플래시 메모리의 주류 역할을 하였던 부유 게이트 플래시 메모리는 40 nm 기술 노드 이하에서 셀간 간섭, 터널 산화막의 누설전류 등에 의한 오동작으로 기술적 한계를 맞게 되었다. 또한 기존의 비휘발성 메모리는 동작 시 높은 전압을 요구하므로 전력소비 측면에서도 취약한 단점이 있다. 그러나 이러한 문제점들을 기존의 Si기반의 소자기술이 아닌 새로운 재료나 공정을 통해서 해결하려는 연구가 최근 활발하게 진행되고 있다. 특히, 플래시 메모리의 중요한 구성요소의 하나인 터널 산화막은 메모리 소자의 크기가 줄어듦에 따라서 SiO2단층 구조로서는 7 nm 이하에서 stress induced leakage current (SILC), 직접 터널링 전류의 증가와 같은 많은 문제점들이 발생한다. 한편, 기존의 부유 게이트 타입의 메모리를 대신할 것으로 기대되는 전하 포획형 메모리는 쓰기/지우기 속도를 향상시킬 수 있으며 소자의 축소화에도 셀간 간섭이 일어나지 않으므로 부유 게이트 플래시 메모리를 대체할 수 있는 기술로 주목받고 있다. 특히, TBM (tunnel barrier engineered memory) 소자는 유전율이 큰 절연막을 적층하여 전계에 대한 터널 산화막의 민감도를 증가시키고, 적층된 물리적 두께의 증가에 의해 메모리의 데이터 유지 특성을 크게 개선시킬 수 있는 기술로 관심이 증가하고 있다. 본 연구에서는 Si3N4/Ta2O5를 적층시킨 staggered구조의 tunnel barrier를 제안하였고, Si기판 위에 tunnel layer로 Si3N4를 Low Pressure Chemical Vapor Deposition (LPCVD) 방법과 Ta2O5를 RF Sputtering 방법으로 각각 3/3 nm 증착한 후 e-beam evaporation을 이용하여 게이트 전극으로 Al을 150 nm 증착하여 MIS- capacitor구조의 메모리 소자를 제작하여 동작 특성을 평가하였다. 또한, Si3N4/Ta2O5 staggered tunnel barrier 형성 후의 후속 열처리에 따른 전기적 특성의 개선효과를 확인하였다.

  • PDF

Anti-inflammatory Effect of Baekho-tang Extract through Endocannabinoid system (ECS) Control in Atopic Dermatitis (아토피피부염에서 Endocannabinoid system (ECS) 조절을 통한 백호탕 추출물의 염증 완화 효과)

  • Ahn Sang Hyun;Kim Ki Bong;Jeong Aram
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.37 no.4
    • /
    • pp.53-62
    • /
    • 2023
  • Objectives The aim of this study was to identify the effect of Baekho-tang extract on epidermal barrier recovery and inflammation relief in atopic dermatitis-induced mice through Endocanabinoid system (ECS) regulation. Methods In this study, we used 4-week-old NC/Nga mice were divided into 4 group: lipid barrier elimination group (LBEG), palmitoylethanolamide treated group after lipid barrier elimination (PEAT), Baekho-tang extract treatment group after lipid barrier elimination (BHTT) and control group (Ctrl). Each group was assigned 10 animals. We identified that cannabinoid receptor (CB) 1, CB2, CD (Cluster of Differentiation) 68, inducible nitric oxide synthase (iNOS), substance P and Matrix metallopeptidase 9 (MMP-9) through our immunohistochemistry. Results We discovered that when compared to PEAT, 8-hydroxydeoxyguanosine, a marker of oxidative stress in the epidermal barrier, and CB1 and CB2, markers of ECS modulation, were less activated in BHTT. These results led to an anti-inflammatory response in BHTT, with a significant decrease in several inflammatory mediators such as CD 68, iNOS, substance P and MMP-9 compared to PEAT and LBEG. Conclusions These results suggest that the Baekho-tang extract can reduce the inflammation of atopic dermatitis by restoring the structural damage of the skin lipid barrier through ECS modulation.

Additional use of autogenous periosteal barrier membrane combined with regenerative therapy in the interproximal intrabony defects: case series (치간부 골내낭의 치주재생치료에서 골막이식의 부가적 사용 증례)

  • Kim, Hyun-Joo;Kim, Hyung-min;Lee, Ju-Youn
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.33 no.3
    • /
    • pp.230-237
    • /
    • 2017
  • Regenerative therapy in an interproximal intrabony defect is a challenge due to unaesthetic appearance after surgery. In this article, we introduce a case series of additional use of autogenous periosteal barrier membrane combined with bovine bone mineral and enamel matrix derivative (EMD) in interproximal periodontal intrabony defects to overcome an aforementioned shortcoming. During the periodontal regenerative surgery, autogenous periosteal membrane was additionally adopted besides xenograft material and EMD. Clinical and radiographic examinations were performed before surgery and 6 months after surgical treatment. All clinical parameters were improved and the intrabony defects were resolved on the radiography 6 months after surgery. Moreover, soft tissue esthetics such as the contour of interdental papilla was better than that of conventional regenerative therapy. Periodontal regenerative therapy using several graft materials and bioactive materials was effective in the treatment of periodontal intrabony defect. Moreover, using of autogenous periosteal barrier membrane combined with xenograft and EMD has additional effect for the treatment of an interproximal intrabony defect in terms of augmentation of interdental soft tissue volume.

Superconformal gap-filling of nano trenches by metalorganic chemical vapor deposition (MOCVD) with hydrogen plasma treatment

  • Moon, H.K.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.246-246
    • /
    • 2010
  • As the trench width in the interconnect technology decreases down to nano-scale below 50 nm, superconformal gap-filling process of Cu becomes very critical for Cu interconnect. Obtaining superconfomral gap-filling of Cu in the nano-scale trench or via hole using MOCVD is essential to control nucleation and growth of Cu. Therefore, nucleation of Cu must be suppressed near the entrance surface of the trench while Cu layer nucleates and grows at the bottom of the trench. In this study, suppression of Cu nucleation was achieved by treating the Ru barrier metal surface with capacitively coupled hydrogen plasma. Effect of hydrogen plasma pretreatment on Cu nucleation was investigated during MOCVD on atomic-layer deposited (ALD)-Ru barrier surface. It was found that the nucleation and growth of Cu was affected by hydrogen plasma treatment condition. In particular, as the plasma pretreatment time and electrode power increased, Cu nucleation was inhibited. Experimental data suggests that hydrogen atoms from the plasma was implanted onto the Ru surface, which resulted in suppression of Cu nucleation owing to prevention of adsorption of Cu precursor molecules. Due to the hydrogen plasma treatment of the trench on Ru barrier surface, the suppression of Cu nucleation near the entrance of the trenches was achieved and then led to the superconformal gap filling of the nano-scale trenches. In the case for without hydrogen plasma treatments, however, over-grown Cu covered the whole entrance of nano-scale trenches. Detailed mechanism of nucleation suppression and resulting in nano-scale superconformal gap-filling of Cu will be discussed in detail.

  • PDF

Growth Behavior of Thermally Grown Oxide Layer with Bond Coat Species in Thermal Barrier Coatings

  • Jung, Sung Hoon;Jeon, Soo Hyeok;Park, Hyeon-Myeong;Jung, Yeon Gil;Myoung, Sang Won;Yang, Byung Il
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.4
    • /
    • pp.344-351
    • /
    • 2018
  • The effects of bond coat species on the growth behavior of thermally grown oxide (TGO) layer in thermal barrier coatings (TBCs) was investigated through furnace cyclic test (FCT). Two types of feedstock powder with different particle sizes and distributions, AMDRY 962 and AMDRY 386-4, were used to prepare the bond coat, and were formed using air plasma spray (APS) process. The top coat was prepared by APS process using zirconia based powder containing 8 wt% yttria. The thicknesses of the top and bond coats were designed and controlled at 800 and $200{\mu}m$, respectively. Phase analysis was conducted for TBC specimens with and without heat treatment. FCTs were performed for TBC specimens at $1121^{\circ}C$ with a dwell time of 25 h, followed by natural air cooling for 1 h at room temperature. TBC specimens with and without heat treatment showed sound conditions for the AMDRY 962 bond coat and AMDRY 386-4 bond coat in FCTs, respectively. The growth behavior of TGO layer followed a parabolic mode as the time increased in FCTs, independent of bond coat species. The influences of bond coat species and heat treatment on the microstructural evolution, interfacial stability, and TGO growth behavior in TBCs are discussed.