• Title/Summary/Keyword: Treated soil

Search Result 1,732, Processing Time 0.028 seconds

Short-term Effect of Phosphogypsum on Soil Chemical Properties

  • Chung, Jong-Bae;Kang, Sun-Chul;Park, Shin
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.5
    • /
    • pp.317-324
    • /
    • 2001
  • Short-term effect of phosphogypsum on soil properties including acidification, salinity and metal availability were investigated under laboratory and field conditions. Phosphogypsum and mixtures of phosphogypsum and compost were added to soil and incubated in a laboratory condition with 15% moisture content. Phosphogypsum treatments were 2.5 and 5.0 g/kg soil and in the treatments of phosphogypsum and compost mixture 10 g of compost was added additionally. After the 30 days of incubation, an additional phosphogypsum and/or compost were added to the remaining soils at the same rates of the first treatments. pH, electrical conductivity, and available hazardous elements were measured periodically during the incubation. Field experiment was conducted in a plastic film house of mellon with four treatments of phosphogypsum and compost mixtures - 25+125, 50+125, 50+250 and 100+250 kg/165 $m^2$. pH, electrical conductivity, and hazardous elements in soil and total hazardous elements in leaf were measured. In the laboratory experiment, after 30 days of the first phosphogypsum application, soil pHs were lowered by 0.7-0.8 units. After the second treatment of phosphogypsum 0.2 units of additional acidification occurred. However, acidification was not observed in the soils treated with mixtures of phosphogypsum and compost. In the laboratory experiment, phosphogypsum treatments increased electrical conductivity very significantly. In field experiment, pH and electrical conductivity of soils treated with phosphogypsum were nearly the same as those of soil not treated with phosphogypsum. Since soil condition in the field study was an open system, the free acids and salts derived from phosphogypsum could be diffused down with water leaching through the soil profile and then any significant acidification or salt accumulation in the topsoil could not be observed. In both laboratory and field experiments, levels of available hazardous elements in soils treated with phosphogypsum were quite low and not different from the levels found in the control soil. Results obtained from this study suggest that application of phosphogypsum at appropriate rates on agricultural land appears of no concern in terms of acidity, salinity and hazardous element content of soil.

  • PDF

Biological Improvement of Reclaimed Tidal Land Soil(IV) Changes of Saline Soil by addition of Organic Acids (해안간척지 토양의 생물학적 토성개선에 관한 연구 (제4보) 유기산첨가에 따르는 토양성분의 제 변화에 대하여)

  • 홍순우
    • Journal of Plant Biology
    • /
    • v.12 no.4
    • /
    • pp.9-18
    • /
    • 1969
  • In the previous paper(part III), a certian relationships between the changes of chlorinity and organic acid released from organic material were seemed to be concened to each other in saline soil suspension. Such a possibility had been a cause to take this experiments and this experiment was carried out under the treatment of organic acid crystal, oxalic acid and succinic acid, to the soil suspension(soil: water=20g:40cc) directly. The amount of organic acid treated to the suspension were related to the contents of organic material, as amount of organic acid per gram of organic material(391.76mg). The saline soil suspension were grouped and treated with the acids in order of 78.35mg(Group 1), 391.76mg(Group 2) 979.4mg(Group 3), and 1958.8mg(Group 4), respectively. Treated suspension had been incubated at room temperature and extract from suspension was used for analysis. Followings are summary of this report. 1) Changes of pH in soil suspension appeared a little increase after the treatment of organic acid until 168 hours. 2) Total acidity of soil suspension showed a variation, however, the values of total acidity appeared not to be increased or decreased during the period of experiment. 3) Sugar contents of soil suspension was increased until 168 hours after treatment. These results are similar tendency to the previous paper. 4) Addition of organic acid to soil suspension was confirmed not to be effective method for desalination from saline soil. Chlorinity of group 3 and 4 which were treated with high concentration of organic acid showed a decrease comparing to control group.

  • PDF

Effect of Microorganism, Vitabio on Growth and Quality of Leaf Lettuce (Vitabio 土壤微生物劑 處理가 葉상치 收量 및 品贊에 미치는 영향)

  • Kim, Kyung-Je;Lee, Byung-Moo
    • Korean Journal of Organic Agriculture
    • /
    • v.12 no.3
    • /
    • pp.345-352
    • /
    • 2004
  • This study was carried out to investigate the effect of soil-born microorganism, vitabio on growth of leaf lettuce in the vinyl house. Total weights of leaf lettuce treated with vitabio showed difference compared with untreated leaf lettuce. Sugar content was also increased. Mineral contents of leaf lettuce showed no difference between treated with vitabio and untreated with vitabio. Exchange Capacity (EC) and Organic Matter (OM) in chemical properties of soil treated with vitabio showed higher than soil in untreated vitabio. Vitabio treated soil contained much more microorganisms such as Bacteria, Actinomycetes, Hyphomycetes, Bacillus sp. Pseudomonas sp. after harvest.

  • PDF

Effects of Rainfall Events on Soil in Orchard Field under Herbicide Treatment. 1. Temporal Characteristics in Soil Physical and Chemical Properties (제초제 처리 과수원 포장에서 강우 사상의 효과. 1. 토양 물리성과 화학성의 변화)

  • Chung, Doug-Young;Kim, Pil-Joo;Park, Mi-Suk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.1
    • /
    • pp.25-35
    • /
    • 2010
  • The periodic application effects of two different herbicides on soil physical properties were observed in a slightly hilly orchard of pear tree located on the southestern flank of the Palbong Mountain in Gongju Chungnam : (1) bare surface vegetation; (2) glyphosate-treated plot; (3) paraquat-treated plot. The slope of experimental plots ranged from 5.5%to 10.2%at an altitude of 125 mand 896 $m^2$ ($28m{\times}32m$) in area. The total respective rainfall events were 47, 52, 52 times during experimental period from 2006 to 2008, while approximately 65 percent of daily rainfall intensity from2006 to 2008 was less than 20 mm a day. The organic matter contents on the surface 15 cm soil ranging from1.23%to 1.84%in 2006 were changed into from1.35 %to 2.28%in 2008 in the order of control > glyphosate > paraquat > bare plot in 2008, indicating that the herbicide treatment influenced the accumulation organic matter in soil. The changes in soil particle contents showed that the loss of soil particles in top 5 cm soil depth was greater in a bare soil than in other treatments such as control, glyphosate, and paraquat-treated plot. The net changes in the bulk densities showed that there were little variations between May of 2006 and Nov. of 2008 even though there were some losses of the soil particles. The soil strength of the glyphosate-treated bare plots was much greater than those of other plots such as control, glyphosate, and paraquat plots. However the soil strengths in control plots were lower than those in the plots of glyphosate and paraquat treated ones.

Effect of microbial product made of Bacillus stearothermophilus DL-3 on microorganisms in soil and growth of lettuce and Chinese cabbage. (Bacillus stearothermophilus DL-3 미생물 제재의 처리가 토양 미생물상 및 상추와 배추의 생장에 미치는 영향)

  • 김순희;배계선;양재균;이유정;오주성;정순재;문병주;이진우
    • Journal of Life Science
    • /
    • v.14 no.5
    • /
    • pp.778-787
    • /
    • 2004
  • Effect of the microbial product made of Bacillus stearothermophilus DL-3, which was isolated from the soil and identified in this study, and rice bran on microorganisms in soil and growth of lettuce (Red skirt lettuce) and Chinese cabbage (Ga rack new No.1 Chinese cabbage) was investigated. Total numbers of microorganisms in the pot with untreated soil, treated with standard amount of microbial product and treated with double amounts of microbial product for growth of lettuce after 6 weeks were 2.78${\times}$10$^{7}$ CFU/g, 2.72${\times}$10$^{8}$ CFU/g and 3.63${\times}$10$^{8}$ CFU/g. Total numbers of microorganisms in the soil without treatment of microbial product and treated with standard amount of microbial product were 2.06${\times}$10$^{8}$ CFU/g and 5.49${\times}$10$^{8}$ CFU/g. Total numbers of microorganisms in the pot with untreated soil, treated with standard amount of microbial product and treated with double amounts of microbial product for growth of Chinse cabbage after 6 weeks were 1.43${\times}$10$^{7}$ CFU/g, 3.42${\times}$10$^{8}$ CFU/g and 7.22${\times}$10$^{8}$ CFU/g. Total numbers of microorganisms in the soil without treatment of microbial product and treated with standard amount of microbial product were 5.75${\times}$10$^{8}$ CFU/g and 7.96${\times}$10$^{8}$ CFU/g. On basis of leaf length, leaf width, leaf number, wet weight and dry weight, the growth of lettuce and Chinese cabbage on the soil treated with microbial product was faster than that on the untreated soil. The treatment of microbial product in the soil resulted in the increase of useful microorganisms, which seemed to enhance the growth of lettuce and Chinese cabbage.

Comparison of Biological Characteristics on the Organic Waste-treated Lysimeter Soil by RFLP, PLFA, and CLSU (RFLP, PLFA, CLSU를 이용한 폐기물연용토양의 토양미생물 특성 평가 비교)

  • Jang, Kab-Yeul;Weon, Hang-Yeon;Lee, Kang-Hyo;Kwon, Sun-Ik;Kong, Won-sik;Suh, Jang-sun;Sung, Jae-Mo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.6
    • /
    • pp.415-418
    • /
    • 2008
  • The application of sludge wastes into agricultural fields has been increasing annually in Korea. In particular, sewage sludge application has been widely accepted in decades. Sewage sludge application aid in the recycling of essential nutrients and act as a source of organic matter improving the structure and water-holding properties of the soil. The efficient use of sludge wastes, however, requires an individual assessment of waste products. This study assessed the biological characteristics of organic waste-treated lysimeter soils and develop its indicator to assess the soil health of organic waste-treated lysimeter soils. Several analytical techniques more recently developed such as restriction fragment length polymorphism (RFLP), phospholipid fatty acid (PLFA), and community level substrate utilization (CLSU) fingerprints allow for detailed analyses of soil microbial communities. PLFA and RFLP was, therefore, used in the study to characterize the microbial communities in soil without the need to isolate individual fungi and bacteria. PLFA, RFLP and CLSU have been utilized to assess microbial characteristics of the lysimeter soils with four different sludge wastes for eight consecutive years. Each of these methods was analyzed for a different aspect of soil microbial characteristics. The study would disclose those methods yielded highly reproductive results for each soil and allow distinguishing the soils based on the structures of specific geneand PLFA-pools more than CLSU fingerprints. PLFA methods, especially, revealed the same relative similarities of the treated soils based on cluster analysis of the biological characteristics. Pig manure compost-treated soil, however, was only the same relative resemblance among the three methods. These results indicated that PLFA easily assessed the biological soil characterization.

The study of the soil removal in cationic cotton fabrics. (양성면직물의 세정성에 관한 연구)

  • Shin Yong Son
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.3 no.1
    • /
    • pp.13-18
    • /
    • 1979
  • Many researches have found that the anionic surfactants are effective when the anionic soil is attached to the cotton fabrics. However, this research investigated the relationship of the super soil removal and surfactants when the anionic and cationic soil was attached to the cationic cotton fabrics. The result is that the cationic surfactants are vary effective for soil removal in the cationic cotton fabrics. The processing and nature of cationic cotton fabrics are treated and investigated as follows: Cotton fabrics are heated in the presence of ethylenimine and acetic acid dissolved in benzene to contain a significant amount of fixed nitrogen. Some polymer was formed but removal by washing with benzene and water. The optinium molor ratio of acid-to-ethylenimine seemed to be in the range 1: 10. The treated cotton fabrics dyed with acid Orange II dyes, and nitrogen content in the treated cotton fabrics were determined by the Kjeldahl method.

  • PDF

Assessment of compressibility behavior of organic soil improved by chemical grouting: An experimental and microstructural study

  • Ghareh, Soheil;Kazemian, Sina;Shahin, Mohamed
    • Geomechanics and Engineering
    • /
    • v.21 no.4
    • /
    • pp.337-348
    • /
    • 2020
  • Tropical organic soils having more than 65% of organic matters are named "peat". This soil type is extremely soft, unconsolidated, and possesses low shear strength and stiffness. Different conventional and industrial binders (e.g., lime or Portland cement) are used widely for stabilisation of organic soils. However, due to many factors affecting the behaviour of these soils (e.g., high moisture content, fewer mineral particles, and acidic media), the efficiency of the conventional binders is low and/or cost-intensive. This research investigates the impact of different constituents of cement-sodium silicate grout system on the compressibility behaviour of organic soil, including settlement and void ratio. A microstructure analysis is also carried out on treated organic soil using Scanning Electron Micrographs (SEM), Energy Dispersive X-ray spectrometer (EDX), and X-ray Diffraction (XRD). The results indicate that the settlement and void ratio of treated organic soils decrease gradually with the increase of cement and kaolinite contents, as well as sodium silicate until an optimum value of 2.5% of the wet soil weight. The microstructure analysis also demonstrates that with the increase of cement, kaolinite and sodium silicate, the void ratio and porosity of treated soil particles decrease, leading to an increase in the soil density by the hydration, pozzolanic, and polymerisation processes. This research contributes an extra useful knowledge to the stabilisation of organic soils and upgrading such problematic soils closer to the non-problematic soils for geotechnical applications such as deep mixing.

Pozzolan Activity of Heat-treated Dredged Sea Soil (소성된 항만준설토의 포졸란 반응성 분석)

  • Moon, Hoon;Kim, Ji-Hyun;Lee, Jae-Yong;Chung, Chul-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.43-44
    • /
    • 2016
  • Large amount of dredged sea soil is produced in southeast seashore region in during harbor maintenance. Disposal of dredged sea soil has become difficult due to the environmental regulation. Therefore, disposal of dredged sea soil method is to landfill. But, the capacity of the landfill limit state and if the size of the dredged sea soil is in the range of silt or clay, it cannot be used as reclamation material because ground subsidence occur. In this study, analyzed the pozzolanic activity of dredged sea soil. Analysis of the results showed a pozzolanic activity of dredged sea soil. In addition, incorporation of heat treated dredged sea soil increase both 28 and 56 day compressive strength of mortar specimen.

  • PDF

Effect of Soil Properties on Leaching of Preservative Components from CCA-treated Wood (토양 특성이 CCA 처리재로부터 방부제 성분의 용탈에 미치는 영향)

  • Jeong, Yong Gi;Kim, Gyu-Hyeok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.6 s.134
    • /
    • pp.87-94
    • /
    • 2005
  • This study was carried out to investigate the effect of soil types and soil properties on wood preservative leaching. Radiata pine (Pinus radiata Don.) sapwood stakes, which had been treated with 2.0%(w/v) CCA, were leached for 12 weeks by a common laboratory method in four different soils and for 14 days by the AWPA standard leaching method in water. The physical and chemical properties of the four soils were determined, and the percent leaching of the individual component of CCA was correlated with the various soil properties. The data show that leaching of preservative chemicals from treated wood exposed to soil is influenced by the type of soil. The preservative leaching was greater when wood was exposed to water than when the wood was in contact with water-saturated soil. The greatest chromium, copper and arsenic leaching from CCA-treated stakes were observed in the sandy loam, loam, and sand, respectively, and the least amount of leaching of CCA components occurred in the silty loam. The leaching of preservative components from treated wood is extremely complex and appears to be influenced differently by the soil properties. The extent of copper leaching from CCA treated wood appears to be related to exchangeable Mg and sum of bases. There is a reasonably good relationship between chromium leaching and exchangeable Mg, and between arsenic leaching and exchangeable K, soil Ni, Mn, Fe, Cr, or Cu content. Since this study was conducted based on laboratory leaching method using small cross-sectional dimensions; thus, data obtained from this experiment should not be used to predict leaching characteristics from commercial-size wood used in real situation. Accordingly, further studies are necessary using outdoor ground-contact leaching.