• Title/Summary/Keyword: Treadmill training

Search Result 270, Processing Time 0.029 seconds

The Effects of Qigong training on the cardiopulmonary functions and catecholamine levels after physical traning stress in untrained college students (‘내경일지선(內徑一指禪)’ 기공수련이 대학생의 운동부하 스트레스 후의 심폐기능 및 Catecholamine 변화에 미치는 영향)

  • Kim Jong-Woo;Oh Jae-Keun;Whang Wei-Wan
    • Journal of Oriental Neuropsychiatry
    • /
    • v.7 no.1
    • /
    • pp.39-48
    • /
    • 1996
  • This study was performed to investigate the effects of Qigong training after physical training stress in untrained college students For this study, 6 voluntary subjects(male 4, female 2) were chosen in untrained students of K University. they were trained by teachers during 6 weeks and tested just before Qingong training and after 6 weeks. Each subject was performed a treadmill exercise(model Q65, Quinton Co, U.S.A.) to the all-out state. During exercise stress test, electrocardiogram, heart rate were checked by stress test monitor(model Q4500, Quinton Co, U.S.A) and also oxygen uptake, maximal oxygen uptake analyzed continuously by automatic gas analysis(model QMC, Quinton Co, U.S.A). During physical training the serum were collected 3 times, pre-experimental rest time, and serum catecholamine were measured by HPLC.T-test of statistical analysis system was used in every experiment for statistical assessment. The results of T-test on these data were summarized as follow:1.Heart rate change during exercise stress test after Qigong training was shown more decreasing tendency than before training. Especially, heart rate change after Qigong training during resting periods was decreased significantly than before training.2. Oxygen uptake change during exercise stress test after Qigong training was shown more increasing tendency than before training, And also maximal oxygen uptake after Qigong training was shown more increasing tendency than before 6 weeks.3. Epinephrine level of after Qigong training was more decreased significantly than before training in all-out state. And norepinephrine level of after Qigong training was shown more decreasing tendency than before training in all-out state and after 30 minutes rest time. Above results indicate that Qigong training for 6 weeks could be effective to elevate the cardiopulmonary functions and diminish the stress responses of the physical stress.

  • PDF

Regular moderate exercise training can alter the urinary excretion of thiamin and riboflavin

  • Kim, Young-Nam;Choi, Ji Young;Cho, Youn-Ok
    • Nutrition Research and Practice
    • /
    • v.9 no.1
    • /
    • pp.43-48
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Physical exercise promotes energy producing pathways requiring thiamin and riboflavin as a coenzyme. Therefore, this study investigated the effects of regular exercise training on urinary excretion of thiamin and riboflavin. MATERIALS/METHODS: Fifty rats were randomly assigned to one of two groups: non-exercise training (NT, n = 25) and regular exercise training (ET, n = 25) for 5 weeks. The rats performed moderate exercise on a treadmill (0.5-0.8 km/hour) for 30 min/day, 5 days/week. Twenty-four hour urine samples were collected at the end of the 0 week, $3^{rd}$ week, and $5^{th}$ week of training and thiamin and riboflavin were analyzed. RESULTS: No significant differences in thiamin and riboflavin intakes for each week were observed between the NT and ET groups. Urinary thiamin excretion of each group was the highest at the $5^{th}$ week compared to the levels at 0 and $3^{rd}$ week. Urinary thiamin at the $5^{th}$ week was significantly lower in the ET group than in the NT group. Urinary riboflavin excretion was increased by training duration, however, no difference was observed between NT and ET for each week. At 0 and $3^{rd}$ week, no significant relationships were observed between dietary intake and urinary excretion of thiamin and riboflavin, however, at the $5^{th}$ week, urinary excretion was significantly increased by dietary intake only in the NT group (P < 0.05). Thiamin excretion of both NT and ET groups was significantly increased with riboflavin excretion at the $5^{th}$ week (P < 0.01). CONCLUSION: Regular moderate exercise training increased urinary excretion of thiamin. Dietary intakes and urinary excretions of thiamin and riboflavin showed positive correlation in both the exercise training and non-exercise training groups as the exercise training period went by, while the correlations in the exercise training group were weaker than those in the non-exercise training group. Therefore, regular exercise training can alter the urinary excretion of thiamin and riboflavin in rats.

Effect of Treadmill Exercise Training on the Expression of PGC-1α, GLUT-1, Tfam Proteins and Antioxydent Ezymes in Brain of STZ-Induced Diabetic Rats (트레드밀 지구성 운동이 streptozotocin으로 유발된 당뇨 흰쥐의 뇌에서 PGC-1α, GLUT-1, Tfam 단백질 및 항산화 효소(Cu, Zn-SOD, Mn-SOD)의 발현량에 미치는 영향)

  • Park, Noh-Hwan;Lee, Jin;Jung, Kook-Hyun;Choi, Bong-Am;Jang, Hyung-Chae;Lee, Suk-In;Lee, Dong-Soo;Cho, Joon-Yong
    • Journal of Life Science
    • /
    • v.21 no.3
    • /
    • pp.435-443
    • /
    • 2011
  • The purpose of this study is to identify the effects of exercise training [ET, 10~18 m/min (speed), 20~30 min (exercise duration)/a day for 5 day/wk, 6 wk) on PGC-$1{\alpha}$, GLUT-1, Tfam, Cu,Zn-SOD and Mn-SOD proteins in brain of STZ-induced diabetic rats. The male Sprague-Dawley (SD) rats were single-injected intraperitoneally with 50mg/kg of streptozotocin (STZ) to produce STZ-induced diabetic rats. Rats were divided into 3 experimental groups with 8 rats in each group, as follows: (1) non-STZ group (n=8), (2) STZ-CON group (n=8), (3) STZ-EXE group (n=8). The results of this study suggest that i) serum glucose level was significantly reduced in STZ-EXE group compared with STZ-CON group (p<0.05), ii) PGC-$1{\alpha}$ (p<0.001), mtPGC-$1{\alpha}$ (p<0.001), GLUT-1 (p<0.001), and mtTfam (p<0.001) proteins in brain of STZ-induced diabetic rats were significantly increased in STZ-EXE group compared with STZ-CON group, iii) Cu,Zn-SOD (p<0.001) and Mn-SOD (p<0.01) proteins in the STZ-induced diabetic rats were significantly increased in STZ-EXE group compared with STZ-CON group. In conclusion, the findings of the present study reveal that treadmill exercise training increases brain GLUT-1 protein level possibly through up-regulation of PGC-$1{\alpha}$ and Tfam proteins which represent key regulatory components of stimulation of brain mitochondrial biogenesis. In addition, treadmill exercise training may prevent oxidative stress by up-regulation of Cu,Zn-SOD and Mn-SOD proteins in the STZ-induced diabetic rats.

Effects of High-intensity Intermittent Training and Moderate-intensity Training on Cardiopulmonary Capacity in Canoe and Kayak Paddlers during 8 Weeks

  • Kim, Ah-Ram;Shin, Won-Seob
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.9 no.3
    • /
    • pp.307-314
    • /
    • 2014
  • PURPOSE: The purpose of this study was to investigate the effects of high intensity intermittent training on cardiopulmonary capacity in canoe and kayak paddlers. METHODS: A total of 16 canoe and kayak paddlers were participated in this study. Experimental group(n=8) was performed high-intensity intermittent training and control group(n=8) was moderate intensity training. All subjects performed a treadmill test in order to compare the difference before and after the intervention. Finishing the test, all subjects were measured to their heart rate(HR), forced vital capacity(FVC), forced expiratory volume in one second (FEV1) and forced expiratory ratio(FEV1/FVC). Recovery of heart rate(RHR) was calculated using the HR. HR and pulmonary flow values was measured before and during the intervention period per 2, 4, 6 and 8 weeks. To compare the differences over time between experimental group and the control group, used(time${\times}$group) two-way repeated measures ANOVA. One-way repeated ANOVA was performed to determine where differences over time within-group. RESULTS: One-way repeated ANOVA revealed a significant difference in the experimental and control group. In experimental group, %RHR3min and FEV1 were significantly increased after 4 weeks(p<.05). Also, %RHR1min, FVC and FEV1/FVC were significantly increased after 6 weeks(p<.05). In control group, %RHR1min, %RHR3min, FVC, FEV1 and FEV1/FVC were significantly increased after 6 weeks(p<.05). CONCLUSION: Not only moderate training but also high-intensity intermittent training contributes to cardiopulmonary capacity in canoe and kayak paddlers. Although high-intensity intermittent training is very short time, the training has high degree of efficiency. Therefore, developed this training in the future, it will be better to improve the cardiopulmonary capacity for athletes and healthy people.

The effect of physical training on glutamate transporter expression in an experimental ischemic stroke rat model

  • Kim, Gye-Yeop;Kim, Eun-Jung
    • Physical Therapy Rehabilitation Science
    • /
    • v.2 no.2
    • /
    • pp.87-91
    • /
    • 2013
  • Objective: The present study was aimed at determining the effect of physical training on glutamate transporter activity in a middle cerebral artery occlusion (MCAO)-induced ischemia injury rat model. Design: Randomized controlled trial. Methods: In this study, we randomly divided them into three groups. Group I included non-occlusion sham controls (n=10), Group II included non-physical training after MCAO (n=10), and Group III included rats that were subjected to physical training after MCAO (n=10). Rats in the physical training group underwent treadmill training, which began at 24 h after MCAO and continued for 14 consecutive days. The training intensity was gradually increased from 5 m/min on the first day to 12 m/min on day 3, and it was maintained until day 14. Focal cerebral ischemia was examined in adult male Sprague-Dawley rats by using the MCAO model. We determined the functional outcomes for each rat on days 1, 7, and 14. Glutamate transporter-1 (GLT-1) activity in the cortex of rats from all three groups was examined at the end of the experiment. Results: Out result show that MCAO rats exhibited severe neurological deficits on the 1 day, and there was no statistically significant in each groups. We observed that the functional outcomes were improved at days 7 and 14 after middle cerebral artery occlusion, and GLT-1 activity was increased in the physical training group (p<0.05). Conclusions: These results indicated that physical training after focal cerebral ischemia exerts neuroprotective effects against ischemic brain injury by improving motor performance and increasing the levels of GLT-1 activity.

Effects of the Group Task-related Program Training on Motor Function and Depression for Patient with Stroke (과제 지향적 그룹 운동 프로그램이 뇌졸중 환자의 운동 기능과 우울증에 미치는 효과)

  • Chung, Jae-Hoon;Ko, Myung-Sook;Lee, Jung-Ah
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.5 no.1
    • /
    • pp.25-34
    • /
    • 2010
  • Purpose : The purpose of this study is to assess the effect for gait, balance, and depression for stroke patients by group task-related program training based motor learning theory. Methods : The subjects of this study were administrated to the 11 stroke patients (9 male, 2 female) by 5 weeks, 3 times per week, 15 times. The group task-related program training were performed gait, balance, treadmill, muscle strengthening, and game program. Each program took 7~10 minutes and total time took 60 minutes including moving time. The difference of program training were compared using the paired t-test. Results : The results of this study revealed that Fugl-Meyer motor assessment, Chedoke-McMaster Stroke assessment of lower extremity and Berg balance scale were significantly correlated. However, impairment item of Chedoke-McMaster Stroke assessment, spatio-temporal gait parameters, Timed up and go test, and depression item of Minnesota Multiphasic Personality Inventory were not significantly correlated. Conclusion : These results support that group task-related program could be a useful treatment to improve the balance skills and motor function of lower extremity for the chronic stroke patients.

Effect of Action Observation by Subject Type on the Balance and the Gait of Stroke Patients

  • Lee, Jong-Su;Kim, Kyoung;Kim, Young-Mi
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.14 no.1
    • /
    • pp.7-14
    • /
    • 2019
  • PURPOSE: This study examined the effects of observing a self-video or a video of another person performing balance and gait training, followed by actual performance of the observed movements on the balance and walking ability of chronic stroke patients. METHODS: Thirty patients, who had experienced a stroke and were admitted to S rehabilitation hospital for treatment, were selected randomly and divided into three groups with 10 patients each: self-action observation (SAO) group, other-action observation (OAO) group, and treadmill walking training (TWT) group. The training program was conducted five times per week for four weeks. The GAITRite system, 10 m walking test, and timed up and go test were performed to measure the subjects' gait and balance ability. RESULTS: The velocity, cadence, double support, and stride length were increased significantly in the SAO and OAO groups (p<.05) but the T group showed no significant changes; no significant difference was observed among the groups (p >.05). The 10MWT decreased significantly in the OAO group (p<.05), but there were no significant changes in the SAO and T groups, and no significant difference was observed among the groups (p>.05). The TUG decreased significantly in the SAO and OAO groups (p<.05), but there were no significant changes in the T group, and no significant difference was observed among the groups (p>.05). CONCLUSION: The self or other action observation training helps improve the balance and gait ability.

Regulatory Effects of Exercise and Dietary Intervention in Mitogen Activated Protein Kinase Signaling Pathways in Rats

  • Lee, Jong-Sam;Kwon, Young-Woo;Lee, Jang-Kyu;Park, Jeong-Bae;Kim, Chang-Hwan;Kim, Hyo-Sik;Kim, Chang-Keun
    • Nutritional Sciences
    • /
    • v.7 no.1
    • /
    • pp.23-30
    • /
    • 2004
  • As a central component of a novel protein kinase cascade, the activation of the mitogen-activated protein (MAP) kinase cascade has attracted considerable attention. We sought to determine the effect of exercise and diet on the activation of the extracellular-signal regulated protein kinase (ERK) 1/2 and the p38 MAP kinase pathways in rat soleus muscle. Forty-eight Sprague-Dawley rats were assigned to one of two dietary conditions: high-carbohydrate (CHO) or high-fat (FAT). Animals having each dietary condition were further divided into one of three subgroups: a sedentary control group that did not exercise (NT), a group that performed 8 weeks of treadmill running and was sacrificed 48 h after their final treadmill run (CE), and a group that was sacrificed immediately after their final routine exercise training (AE). A high-fat diet did not have any significant effect on phosphorylated and total forms of ERK 1/2 or p38 MAP kinase. In chronically trained muscle that was taken 48 h after the last training, phosphorylated ERK 1/2 significantly increased only in the FAT but not in the CHO groups. In the case of total ERK 1/2, it increased significantly for both groups. In contrast, both phosphorylated and total forms of p38 MAP kinase decreased markedly compared to sedentary muscle. In muscle that was taken immediately after a last bout of exercise, phosphorylated ERK 1/2 increased in both groups but statistical significance was seen only in the CHO group. Total ERK 1/2 in acutely stimulated muscle increased only in the CHO-AE group even though the degree was much lower than the phosphorylated status. Muscle that was taken immediately after the routine training increased in phosphorylation status of p38 MAP kinase for both dietary conditions. However, statistical significance was seen only in the CHO group owing to a large variation with FAT. In conclusion, a high-fat diet per se did not have any notable effect versus a high-carbohydrate diet on MAP kinase pathways. However, when diet (either CHO or FAT) was combined with exercise and/or training, there was differentiated protein expression in MAP kinase pathways. This indicates MAP kinase pathways have diverse control mechanisms in slow-twitch fibers.

The influence of different durations of aerobic exercise on fuel utilization, lactate level and antioxidant defense system in trained rats

  • Choi, Eun-Young;Cho, Youn-Ok
    • Nutrition Research and Practice
    • /
    • v.8 no.1
    • /
    • pp.27-32
    • /
    • 2014
  • This study investigated the influence of different durations of aerobic exercise on fuel utilization, lactate levels and antioxidative status in trained rats. Forty rats underwent physical training (T, n = 20) or non- training (NT, n = 20) for 6 weeks. For physical training, animals exercised on a treadmill for 30 min 5 days per week. At the end of week 6, the animals in each group were subdivided into BE, DE-0.5, DE-1 and DE-2, which were sacrificed at the end of week 6 without having performed exercise or after exercise on a treadmill for 0.5h, 1h and 2h, respectively, immediately before being sacrificed. The plasma glucose level in DE-2 of the NT group was significantly lower than in the other groups. Muscle and liver glycogen levels were significantly lower in DE-1 and DE-2, but there were no significant differences between DE-1 and DE-2 in the T group. Liver protein in DE-2 of the NT group was significantly lower. Muscle TG levels were decreased in DE-0.5 of the T group, while those of the NT group were decreased in DE-1. FFA levels were increased in DE-0.5 of the T group and in DE-1 of the NT group. Lactate levels were increased in DE-0.5 of the NT group, while they were increased in DE-1 of the T group. Catalase activity of the T group was lower in BE but higher in DE-0.5, DE-1 and DE-2. SOD activities were higher in trained rats, while the GSH/GSSG ratios were higher in BE, DE-0.5 and DE-1 in the T group, and there was no difference in that of DE-2. There were no differences in MDA levels in BE and DE-0.5, but they were significantly lower in DE-1 and DE-2 of the T group. Overall, the results of this study, suggest that training may improve exercise performance by facilitating the mobilization and oxidation of fat and conserving limited carbohydrate storage, and that it may delay the onset of fatigue and enhance the antioxidative defense system, but cannot support two hours of vigorous exercise.